ФУНКЦИИ ВЕЙЕРШТРАССА
Непрерывные, но нигде не дифференцируемые функции Вейерштрасса оказали столь сильное воздействие на развитие математики, что становится любопытно выяснить, не следует ли их история образу, нарисованному Фаркашем Бойяи в письме к своему сыну, Яношу: «Есть доля истины в том, что у многих вещей есть своя эпоха, в течение которой одни одновременно встречаются в самых различных местах – так весной на каждом склоне можно найти цветущие фиалки». Еще, похоже, слетаются соавторы на мед возможной публикации.
Однако в данном случае события разворачивались совершенно иначе. Трудно поверить, но Вейерштрасс так и не опубликовал своего открытия, хотя и прочел о нем лекцию в Берлинской академии наук 18 июля 1872 г. Конспект лекции попал-таки в изданное значительно позднее «Собрание сочинений» [588], однако мир узнал об открытии Вейерштрасса только в 1875 г. из статьи Дюбуа - Реймона [115] (там же эти функции были впервые названы именем первооткрывателя). Таким образом, год 1875 является не более чем удобной символической датой для обозначения начала Великого кризиса математики.
Дюбуа – Реймон пишет, что «метафизика этих функций скрывает, по всей видимости, множество загадок, и я не могу избавиться от ощущения, что поиски ответов на них приведут нас к границе наших интеллектуальных возможностей». Возникает и другое ощущение: никто, похоже, особенно и не спешил выяснить, где же находятся эти самые границы. Те из современников, кто было подступился к задаче (Гастон Дарбу, например), тут же отступили и ударились в крайний консерватизм, у других же и на это духу не хватило. Кроме того, невольно вспоминается другая – значительно более известная – история о Гауссе, скрывающем свое открытие неевклидовой геометрии «из страха перед бунтом беотийцев» (из письма Гаусса к Бесселю от 27 января 1829 г.). (Позднее, однако, Гаусс открылся сыну своего друга Яношу Бойяи – с катастрофическими последствиями для рассудка последнего – после того, как Янош Бойяи опубликовал статью о собственном открытии неевклидовой геометрии, совершенном, разумеется, независимо от Гаусса.) Наконец, на память приходит данный однажды Кантору совет Миттаг – Леффлера, суть которого заключается в том, что не стоит воевать с редакторами, нужно лишь придержать свои наиболее дерзновенные открытия до тех пор, когда мир созреет для них. Можно по пальцам перечесть случаи, когда самые передовые деятели науки с такой необычайной неохотой воспринимали новое, как в этих трех не похожих одна на другую историях.
Помимо Вейерштрасса здесь следует упомянуть еще три имени. Уже давно ходят слухи (зарегистрированные в письменном виде в [443]), что Риман приблизительно в 1861 г. демонстрировал своим студентам функцию R(t)=?n?2cos(n2t), которая являлась, по его словам, непрерывной и недифференцируемой. Мы, однако, не располагаем ни точной формулировкой утверждения Римана, ни его доказательством. Более того, если термин «недифференцируемая» означает «нигде не дифференцируемая», то любое предлагаемое доказательство должно быть ошибочным, поскольку в работах [169] и [528] совершенно недвусмысленно показано, что функция R(t) имеет положительную и конечную производную в определенных точках. Функцией Римана интересовался также и Кронекер, что еще более подчеркивает, насколько занимал этот вопрос умы тогдашних математиков. (Для расширения знаний по истории вопроса рекомендую обратить внимание на [410], [207] и [116, 117, 118, 119].)
Больцано, чье имя связано с именем Вейерштрасса в другом, более широко известном контексте, также фигурирует в этой истории. Бернард Больцано (1781 – 1848) – один из немногих подпольных героев от математики, б?льшая часть трудов которого оставалась невостребованной вплоть до начала третьего десятилетия XX в. – описал в 1834 г. близкий аналог функции Вейерштрасса, но не смог разглядеть того ее свойства, благодаря которому она приобретает для нас столь большое значение (см. [526], с. 8).
Третий персонаж, не получивший широкой известности ни при жизни, ни посмертно, играет в нашей истории вторую по значимости после Вейерштрасса роль. Шарль Селлерье (1818 – 1890) преподавал в Женеве и не опубликовал ничего сколько-нибудь заметного, однако в бумагах, оставшихся после его смерти, обнаружилось неожиданное «откровение». Одна из папок, недатированная, но помеченная «Очень важно и, полагаю, ново. Проверено. Можно публиковать в настоящем виде», содержала рукописный текст, описывающий предельный случай D=1 функции, идентичной функции Вейерштрасса, с известными выводами. Пожелтевшие страницы показали некоему ученому по фамилии Кайе, который добавил к тексту примечание (откуда, собственно, и взяты вышеприведенные сведения) и незамедлительно опубликовал его в виде статьи [73]. Публикация вызвала некоторый умеренный интерес (особенно со стороны Грейс С. Юнг). В 1916 г. Рауль Пикте вспоминал, что когда он был студентом у Селлерье (приблизительно в 1860 г.), тот упоминал на занятиях об этой своей работе. Письменных свидетельств, однако, не сохранилось, и в итоге первенство Селлерье так и осталось недоказанным.
Таким образом, Вейерштрасс – единственный законный претендент, и некому оспорить правомочность именования рассматриваемой функции в его честь, однако в свете известных нам весьма странных событий здесь есть над чем поразмыслить. Больцано и в самом деле опубликовал некое выражение, полагая его безобидным, но двое других – скромный провинциал, которому незачем было беспокоиться за свою научную репутацию по причине полного отсутствия таковой, и гроссмейстер, который, скорее всего, ясно осознавал, что его научную репутацию ничто запятнать не сможет, - несомненно понимали, что оказалось у них в руках, и все же предпочли промолчать и выждать. Принцип «публикуйся или пропадай» был им, судя по всему, чужд как ничто другое.
Поскольку функция Вейерштрасса часто используется в качестве аргумента в призывах к «разводу по обоюдному согласию» между математикой и физикой, представляется уместным упомянуть об отношении ее первооткрывателя к взаимосвязи между этими двумя путями постижения мира. Имя Вейерштрасса можно встретить в геометрической оптике (точки Юнга – Вейерштрасса на сферической линзе). Кроме того, в своей вступительной лекции в 1857 г. (выдержки из которой приводятся у Гильберта [214], том 3, с. 337 – 338) Вейерштрасс особо подчеркивал, что физикам не следует видеть в математике всего лишь вспомогательную дисциплину, а математикам не стоит рассматривать вопросы физиков, как удобные примеры к своим методам. «На вопрос, возможно ли в действительности извлечь что-нибудь полезное из абстрактных теорий, которыми, на первый взгляд, так увлечена современная [1857 г.] математика, можно ответить, что основываясь на одних только абстрактных умопостроениях, греческие математики вывели свойства конических сечений, причем случилось это задолго до того, как было установлено, что по траекториям, имеющим форму конических сечений, движутся планеты вокруг Солнца». Amen.