МНОЖЕСТВО ℒ В НЕФУКСОВЫХ ЦЕПЯХ ПУАНКАРЕ

We use cookies. Read the Privacy and Cookie Policy

Самоинверсные фракталы, получаемые при инверсиях относительно не столь особых конфигураций порождающих окружностей Cm, оказываются более сложными, чем любая аполлониева сеть. Чуть позже я познакомлю вас со своей собственной рабочей конструкцией, которая в большинстве случаев вполне удовлетворительно характеризует множество ?. Она является большим шагом вперед по сравнению с предыдущим, предложенным Пуанкаре и Клейном, методом, который весьма громоздок и очень медленно сходится.

Однако старый метод также сохраняет свою значимость, поэтому я предлагаю рассмотреть его на примере особого случая. Пусть окружности Cm образуют конфигурацию, которую можно назвать цепью Пуанкаре; эта конфигурация представляет собой совокупность M окружностей Cm, расположенных по кругу и соответственно пронумерованных, так что окружность Cm касательна к Cm?1 и Cm+1 (по модулю M) и не пересекает никаких других окружностей цепи. В этом случае множество ? представляет собой кривую, которая разделяет плоскость на две области – внешнюю и внутреннюю. (Воздавая должное Камилю Жордану, который первым обнаружил неочевидность того, что плоскость можно таким образом разделить одной-единственной петлей, такие петли называются с тех пор кривыми Жордана.)

В случае, когда все окружности Cm ортогональны одной окружности ?, множество ? совпадает с ?. Этот случай, называемый фуксовым, в настоящей главе не рассматривается.

Построение Пуанкаре для множества ?. Ниже приводится полное описание общепринятого построения множества ? и моего альтернативного варианта для случая особой цепи с M=4, показанной на следующем рисунке.

Для получения ? Пуанкаре и Клейн (см. [154]) поэтапно заменяют исходную цепь цепями, составляемыми из все возрастающего числа все уменьшающихся звеньев. На первом этапе каждое звено Ci заменяется инверсиями остальных звеньев Cm относительно Ci; таким образом, получается, в общей сложности, M(M?1)=12 меньших звеньев. Они показаны на рисунке справа вверху на фоне негативного изображения исходных звеньев. И так далее – на каждом этапе мы берем полученную на предыдущем этапе цепь и инвертируем ее относительно каждого из исходных звеньев Cm. На рисунке черным цветом показано несколько последовательных этапов построения, причем каждый из них наложен на результат предыдущего этапа, показанный белым цветом на сером фоне. В конце концов, цепь истончается в нить, т. е. в ?.

К сожалению, некоторые звенья и после достаточно большого количества этапов остаются довольно крупными, и даже сильно продвинутые аппроксимации предельной цепи дают довольно слабое представление о множестве ?. Это неприятное свойство прекрасно иллюстрирует рисунок 255.