6. ДРОБНАЯ БРОУНОВСКАЯ ФУНКЦИЯ ИЗ ОКРУЖНОСТИ ИЛИ ТОРА В ПРЯМУЮ

We use cookies. Read the Privacy and Cookie Policy

Дробные броуновские функции из окружности в прямую гораздо более изощрены, чем функции, описанные в подразделе 4. Простейшая из них представляет собой сумму дробного ряда Фурье – Броуна – Винера, который, по определению, имеет независимые гауссовы коэффициенты и полностью случайные фазы, причем модули коэффициентов пропорциональны n?H?? . Дробная броуновская функция из тора в прямую представляет собой сумму двойного ряда Фурье с такими же свойствами.

Предостережение. Исходя из поверхностной аналогии, можно предположить, что дробную броуновскую функцию из окружности в прямую можно получить с помощью процесса, применимого и в недробном случае: образовать тренд B*H(t) дробной броуновской функции из прямой в прямую, затем исключить этот тренд из функции BH(t) и повторением получить периодическую функцию.

К сожалению, полученная таким образом периодическая функция и сумма ряда Фурье с коэффициентами n?H?? суть разные случайные функции. В частности, ряд Фурье стационарен, в то время как многократно повторенная функция BH(t) с исключенным трендом – нет. Например, на некотором малом интервале по обе стороны от t=0 многократно повторенный мост с исключенным трендом объединяет два непоследовательных подучастка функции BH(t). Ограничения, имеющегося в определении моста, вполне достаточно для того, чтобы объединенный участок оказался непрерывным, но совершенно не достаточно для того, чтобы сделать его стационарным. Такой участок, к примеру, совсем не тождествен по своему распределению некоторому малому участку, составленному из последовательных подучастков по обе стороны от точки t=?.

Замечания по моделированию. Вычислить дробную броуновскую функцию из прямой в прямую с помощью конечных дискретных методов Фурье теоретически невозможно; на практике же это вполне осуществимо, однако требует немалой сноровки. Наиболее прямолинейная процедура заключается в следующем: а) вычисляем соответствующую функцию из окружности в прямую, б) отбрасываем ее за исключением ограниченного участка, соответствующего малому подынтервалу периода 2? (скажем, 0<t<t*) и в) прибавляем к результату отдельно вычисленную низкочастотную составляющую. При H?1 значение t* должно стремиться к нулю.

Фрактальные размерности. Для полного графика D=2?H (см. [457]). Когда множество уровня непусто, D=1?H . Этот результат приводится в [412] (усиливая теорему 5 (с. 146) [248]).

Критический переход при H=1. Дробный ряд Фурье – Броуна – Винера с независимыми гауссовыми коэффициентами, пропорциональными n???H, сходится в непрерывную сумму при всех H>0. Когда значение параметра H пересекает единицу, сумма становится дифференцируемой. Что касается дробного броуновского процесса, то он определен лишь до H=1. Различие в диапазоне допустимых значений параметра H может служить подтверждением того, что эти два процесса существенно отличаются друг от друга. Это различие также предполагает, что физические критические переходные феномены можно моделировать с помощью броуновских функций из прямой в прямую, но никак не с помощью броуновских функций из окружности в прямую.