РАСПРЕДЕЛЕНИЕ МАССЫ: ФРАКТАЛЬНАЯ ГОМОГЕННОСТЬ

We use cookies. Read the Privacy and Cookie Policy

Шаг от геометрии к распределению массы представляется мне как нельзя более очевидным. Если каждый звездный агрегат нулевого порядка нагрузить единичной массой, то масса M(R) внутри шара радиуса R>1 идентична величине M0(R), а следовательно, ?R. Кроме того, чтобы получить агрегаты порядка -1 из агрегатов нулевого порядка, необходимо разбить шар, который мы считали однородным и обнаружить, что он состоит из семи меньших шаров. На этом этапе правило M(R)?R распространяется и на радиусы, меньшие единицы.

Рассматривая полученное распределение массы по всему 3-пространству, мы видим, что оно чрезвычайно неоднородно, хотя на фрактале Фурнье ему в однородности нет равных. (Вспомните рис. 120.) В частности, любые две геометрически одинаковые части вселенной Фурнье содержат одинаковые массы. Предлагаю такое распределение массы называть фрактально гомогенным.

< Предыдущее определение сформулировано в терминах масштабно-инвариантных фракталов, но концепция фрактальной гомогенности в общем случае гораздо шире. Она применима к любому фракталу, для которого положительна и конечна хаусдорфова мера в размерности D. Фрактальная гомогенность требует, чтобы масса, содержащаяся в множестве, была пропорциональна хаусдорфовой мере этого множества. ?