БРОУНОВСКИЙ РЕЛЬЕФ НА ПЛОСКОЙ ЗЕМЛЕ [384]
В основе нашего подхода к построению рельефа лежит построение его вертикальных сечений. Как уже указывалось в главе 4 и в пояснении к рис. 338, одной из причин написания этого эссе стало предположение (высказанное в [342]) о том, что скалярное случайное блуждание может являться грубым первым приближением поперечного сечения горы. Итак, я пустился на поиски случайной поверхности, вертикальные сечения которой представляли бы собой броуновские функции из прямой в прямую. В инструментарий строителя статистических моделей такая поверхность не входит, однако тут, по счастью, мне на глаза попалась одна весьма подходящая, хотя и малоизвестная претендентка.
Речь идет о броуновской функции точки из плоскости в прямую (B(P)), определенной Полем Леви в [306]. Для того чтобы свести с ней близкое знакомство и получить возможность использовать ее в реальных моделях, не существует иного пути, нежели самое тщательное изучение уже готовой модели, изображенной на рис. 370. Это воображаемый броуновский ландшафт характеризуется фрактальной размерностью D=5/2 и, несомненно, является более пересеченным, чем б?льшая часть поверхности Земли.
Таким образом, перед нами грубая модель, которая так и напрашивается на возвращение на верстак для доработки. И все-таки она символизирует собой огромный – и прекрасный! – шаг вперед.
Предупреждение об опасности броуновских листов. Размножению различных вариантов броуновского движения не видно конца, и терминология здесь еще не совсем устоялась. Не следует путать упомянутую здесь броуновскую функцию из плоскости в прямую с броуновским листом. Последний представляет собой совершенно иной процесс, обращающийся в нуль вдоль координатных осей и строго изотропный. Подробности можно найти в книге [3], особенно интересны иллюстрации на с. 185 и 186.