И СНОВА МОДЕЛИ БЕРЕГОВЫХ ЛИНИЙ

We use cookies. Read the Privacy and Cookie Policy

То, что многоугольники без самопересечений имеют размерность D~4,3, похоже, дает им право выступать в качестве моделей береговых линий, иррегулярность которых превышает средний уровень. Мы, конечно же, можем возрадоваться этому открытию, однако оно никоим образом не разрешает вопроса о форме береговых линий, поставленного в главе 5.

Прежде всего, остается проблема островов. Концепция размерности должна одновременно учитывать и иррегулярность береговых линий, и их фрагментацию, и связь между иррегулярностью и фрагментацией. А у не пересекающих себя многоугольников прибрежных островов, к сожалению, не наблюдается.

Кроме того, я полагаю, что одного – единственного значения D для всех береговых линий Земли явно недостаточно.

И, наконец – последнее по порядку, но не по значимости, - если шаг решетки, на которой мы строим очень обширное случайное блуждание (или большой многоугольник) без самопересечений, уменьшается с единицы до какого-либо малого значения ?, то две точки, разделенные ранее промежутком единичной длины, сходятся в пределе к одной и той же точке. Таким образом, в предельном случайном блуждании (многоугольнике) на частой решетке появляются точки пусть не самопересечения, но самокасания. Мне совсем не нравится наличие таких точек в модели береговой линии. Помимо всего прочего, эта модель подразумевает возможность буквальной интерпретации латинского слова peninsula («полуостров» или, буквально, «почти – остров») как острова, который касается материка в одной – единственной точке, а также существования почти – озер.