АЛЬТЕРНАТИВНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ

We use cookies. Read the Privacy and Cookie Policy

Метод А. Установим раствор измерительного циркуля на некоторую заданную длину ?, которую назовем длиной шага, и пройдемся этим циркулем вдоль интересующей нас береговой линии, начиная каждый новый шаг в той точке, где закончился предыдущий. Количество шагов, умноженное на длину е, даст нам приблизительную длину берега L(?). Со школьной скамьи нам известно, что если повторять эту операцию, каждый раз уменьшая раствор циркуля, то можно ожидать, что величина L(?) быстро устремится к некоторому вполне определенному значению, называемому истинной длиной. Однако то, что происходит на деле, никак не соответствует нашим ожиданиям. В типичном случае наблюдаемая длина L(?) склонна увеличиваться неограниченно.

Причина такого ее поведения очевидна: если рассмотреть какой-нибудь полуостров или бухту на картах масштаба 1/100 000 и 1/10 000, то на последней карте мы ясно различим более мелкие полуострова и бухты, которых не было видно на первой. Карта того же участка, выполненная в масштабе 1/1000, покажет нам еще более мелкие полуостровки и бухточки, и так далее. Каждая новая деталь увеличивает общую длину берега.

Вышеописанная процедура подразумевает, что линия берега имеет слишком неправильную форму, и поэтому ее длина не может быть непосредственно представлена в виде суммы длин простых геометрических кривых, значения длин которых можно найти в справочниках. То есть, Метод А заменяет береговую линию на последовательность ломаных линий, составленных из прямолинейных участков, длину которых мы определять умеем.

Метод В. Такого же «сглаживания» можно добиться и другими способами. Вообразите себе человека, проходящего вдоль берега по кратчайшему пути, траектория которого нигде не отходит от воды далее чем на заданное расстояние ?. Дойдя до конечной точки, он возвращается назад, несколько уменьшив при этом величину ?. Затем еще и еще, пока, наконец, величина ? не достигнет, скажем, 50 см. Уменьшать ее далее не представляется возможным, так как человек слишком велик и неуклюж, чтобы суметь проследить более детализированную траекторию. Мне могут возразить, что эти недостижимые мелкие детали, во-первых, не представляют для человека никакого непосредственного интереса, а во-вторых, подвержены столь значительным изменениям в зависимости от времени года и высоты прилива, что их подробная регистрация вообще теряет всякий смысл. Первое из возражений мы рассмотрим позднее в этой главе. Что касается второго возражения, то его можно нейтрализовать, ограничившись рассмотрением скалистого берега при низком приливе и спокойной воде. В принципе, человек может проследить и более детализированные приближенные кривые, призвав себе на помощь мышь, затем муравья и так далее. И снова, по мере того, как наш ходок следует все более близкой к воде тропой, расстояние, которое ему предстоит пройти, неограниченно возрастает.

Метод С. Метод В подразумевает определенную асимметричность между водой и берегом. Для того, чтобы избежать этой асимметричности, Кантор предложил рассматривать береговую линию словно бы через расфокусированный объектив, вследствие чего каждая точка превращается в круглое пятно радиуса ?. Другими словами, Кантор рассматривает все точки — как на суше, так и на воде, — расстояние от которых до собственно береговой линии не превышает ?. Эти точки образуют некое подобие сосиски или ленты шириной 2? (пример такой «сосиски» — правда, в ином контексте — приведен на рис. 56). Измерим площадь полученной ленты и разделим ее на 2?. Если бы береговая линия была прямой, то лента представляла бы собой прямоугольник, а найденная вышеописанным образом величина оказалась бы действительной длиной берега. Имея дело с реальными береговыми линиями, мы получаем приблизительную оценку длины L(?), которая неограниченно возрастает при уменьшении ?.

Метод D. Вообразите себе карту, выполненную в манере худож- ников-пуантилистов, т. е. такую, где материки и океаны изображены цветными круглыми пятнами радиуса ?. Вместо того, чтобы считать центрами пятен точки, принадлежащие береговой линии, как в Методе С, потребуем, чтобы количество пятен, полностью скрывающих линию, было наименьшим. В результате у мысов пятна будут по большей части лежать на суше, а у бухт — в море. Оценкой длины береговой линии здесь будет результат деления закрытой пятнами площади на 2?. «Поведение» этой оценки также оставляет желать лучшего.