ТЕРАГОНЫ КАК МОДЕЛИ БЕРЕГОВЫХ ЛИНИЙ. ТРОИЧНАЯ КРИВАЯ КОХА K

We use cookies. Read the Privacy and Cookie Policy

Если мы хотим получить кривую, содержащую бесконечное число масштабов длины, то надежнее всего будет ввести их туда собственноручно, один за другим. Правильный треугольник с длиной стороны, равной 1, имеет один масштаб, правильные треугольники с длиной стороны, равной 1/3, также имеют один масштаб, только меньший — уменьшая длину стороны далее по правилу (1/3)k, мы будем получать треугольники все меньшего масштаба. Нагромоздив затем все эти треугольники друг на друга (как показано на рис. 70), получим форму, содержащую все масштабы, меньшие 1.

В сущности, мы предполагаем, что некоторый участок береговой линии, изображенный в масштабе 1/1 000 000, выглядит как прямой отрезок единичной длины; назовем такой участок инициатором. Затем мы предполагаем, что на карте масштаба 3/1000 000 становится видимой некая деталь, а именно, — выступ в форме равностороннего треугольника, занимающий среднюю треть исходного отрезка. Полученное таким образом второе приближение — ломаную, составленную из четырех отрезков равной длины — назовем генератором. Предположим далее, что еще более подробная карта (масштаба 9/1000 000) выглядит как результат замены каждого из четырех отрезков генератора уменьшенной в три раза копией этого самого генератора, т. е. из каждого выступа вырастает по два новых выступа той же формы, но меньшего размера.

Продолжая в том же духе, мы заменяем все прямолинейные отрезки ломаными линиями, и первоначально прямой инициатор постепенно превращается во все более длинную ломаную кривую. Поскольку мы будем иметь дело с такими кривыми на всем протяжении этого эссе, предлагаю ввести для их обозначения новый термин терагоны (от греч. «чудовище, странное создание» и «угол»). Кстати, префикс тера обозначает (очень уместно, надо сказать) в метрической системе умножение на 1012.

Если продолжить вышеописанный каскадный процесс до бесконечности, то наши терагоны устремятся к пределу, рассмотренному впервые фон Кохом [574] (см. рис. 74). Назовем такую кривую троичной кривой Коха и обозначим символом K.

На рис. 71 хорошо видно, что площадь этой кривой обращается в нуль. С другой стороны, с каждой ступенью построения ее общая длина увеличивается в 4/3 раза, следовательно, в пределе длина кривой Коха бесконечна. Более того, кривая Коха непрерывна, но нигде не имеет касательной — точно график непрерывной функции, не имеющей производной.

В качестве модели береговой линии кривая K, представляет собой лишь очень отдаленное приближение, но не потому, что она слишком неправильна — скорее потому, что по сравнению с неправильностью типичной береговой линии неправильность кривой Коха уж очень предсказуема. В главах 24 и 28 мы попробуем добиться лучшего соответствия с помощью некоторой рандомизации процесса построения.