ТЕРАГОНЫ КАК МОДЕЛИ БЕРЕГОВЫХ ЛИНИЙ. ТРОИЧНАЯ КРИВАЯ КОХА K
Если мы хотим получить кривую, содержащую бесконечное число масштабов длины, то надежнее всего будет ввести их туда собственноручно, один за другим. Правильный треугольник с длиной стороны, равной 1, имеет один масштаб, правильные треугольники с длиной стороны, равной 1/3, также имеют один масштаб, только меньший — уменьшая длину стороны далее по правилу (1/3)k, мы будем получать треугольники все меньшего масштаба. Нагромоздив затем все эти треугольники друг на друга (как показано на рис. 70), получим форму, содержащую все масштабы, меньшие 1.
В сущности, мы предполагаем, что некоторый участок береговой линии, изображенный в масштабе 1/1 000 000, выглядит как прямой отрезок единичной длины; назовем такой участок инициатором. Затем мы предполагаем, что на карте масштаба 3/1000 000 становится видимой некая деталь, а именно, — выступ в форме равностороннего треугольника, занимающий среднюю треть исходного отрезка. Полученное таким образом второе приближение — ломаную, составленную из четырех отрезков равной длины — назовем генератором. Предположим далее, что еще более подробная карта (масштаба 9/1000 000) выглядит как результат замены каждого из четырех отрезков генератора уменьшенной в три раза копией этого самого генератора, т. е. из каждого выступа вырастает по два новых выступа той же формы, но меньшего размера.
Продолжая в том же духе, мы заменяем все прямолинейные отрезки ломаными линиями, и первоначально прямой инициатор постепенно превращается во все более длинную ломаную кривую. Поскольку мы будем иметь дело с такими кривыми на всем протяжении этого эссе, предлагаю ввести для их обозначения новый термин терагоны (от греч. «чудовище, странное создание» и «угол»). Кстати, префикс тера обозначает (очень уместно, надо сказать) в метрической системе умножение на 1012.
Если продолжить вышеописанный каскадный процесс до бесконечности, то наши терагоны устремятся к пределу, рассмотренному впервые фон Кохом [574] (см. рис. 74). Назовем такую кривую троичной кривой Коха и обозначим символом K.
На рис. 71 хорошо видно, что площадь этой кривой обращается в нуль. С другой стороны, с каждой ступенью построения ее общая длина увеличивается в 4/3 раза, следовательно, в пределе длина кривой Коха бесконечна. Более того, кривая Коха непрерывна, но нигде не имеет касательной — точно график непрерывной функции, не имеющей производной.
В качестве модели береговой линии кривая K, представляет собой лишь очень отдаленное приближение, но не потому, что она слишком неправильна — скорее потому, что по сравнению с неправильностью типичной береговой линии неправильность кривой Коха уж очень предсказуема. В главах 24 и 28 мы попробуем добиться лучшего соответствия с помощью некоторой рандомизации процесса построения.