ФЕНОМЕН ХЕРСТА. ПОКАЗАТЕЛЬ H

We use cookies. Read the Privacy and Cookie Policy

Обозначим через X*(t) совокупный сток реки за первый период от начала нулевого года до конца t - го года. Согласуем его посредством вычитания выборочного среднего стока за период между нулевым и d - м годами и определим величину R(d) как разность между максимумом и минимумом согласованного стока X*(t) при 0<t<d. При таком определении величина R(d) представляет собой пропускную способность, какой должен обладать водоем для обеспечения идеального функционирования на протяжении соответствующего числа лет (d). Водоем функционирует идеально, если уровень воды в нем в конце и в начале указанного периода одинаков, водоем никогда не пустеет, никогда не переполняется и производит однородный поток. Идеал, очевидно, недостижим, однако величину R(d) вполне можно брать за основу метода проектирования водохранилищ, - например метода, предложенного Рипплом и примененного при строительстве Асуанской плотины. Херсту пришло в голову, что R(d) можно использовать и в качестве инструмента исследования действительного поведения статистики речных стоков. Из соображений удобства он разделил R(d) на коэффициент подобия S(d) и рассмотрел зависимость отношения R(d)/S(d) от d.

Если допустить, что объемы годовых стоков представляют собой белый гауссов шум, то коэффициент S теряет свою значимость, а совокупный сток X*(t), согласно известной теореме, приблизительно совпадает с броуновской функцией из прямой в прямую B(t). Следовательно, пропускная способность R(d) прямо пропорциональна среднеквадратическому объему стока X*(d), который, в свою очередь, прямо пропорционален ?d. Отсюда получаем R/S??d (см. [146]). Тот же результат верен и в том случае, если объемы годового стока зависимы, но зависимость эта марковская с конечной дисперсией, или в том случае, когда зависимость объемов стока принимает какую-либо из форм, описанных в элементарных учебниках по статистике или теории вероятности.

Однако, руководствуясь результатами наблюдений, Херст пришел к совершенно иному и абсолютно неожиданному выводу, который заключается в том, что R/S?dH, где H почти всегда больше ?. Объемы годового стока Нила (самые зависимые из всех) демонстрируют H=0,9. Для рек Св. Лаврентия, Колорадо и Луары показатель H находится где-то между 0,9 и ?. Рейн – река особенная, ее совершенно не волнует ни история Иосифа, ни феномен Херста, и она держит показатель H на уровне ? с точностью до экспериментальной погрешности. Результаты всевозможных наблюдений можно найти в работе [407].