ДРОБНЫЙ БРОУНОВСКИЙ РЕЛЬЕФ НА ПЛОСКОЙ ЗЕМЛЕ [384]
Главным недостатком двух представленных броуновских моделей рельефа является то, что из размерность D=3/2 слишком велика для верного описания береговых линий. Как следствие, наши поиски более широко применимой модели приобретают неожиданный оттенок. Давным-давно, в главах 5 и 6, мы провозгласили возможность справедливости неравенства D>1 и тут же принялись искать способы заставить размерность D превысить 1. Теперь же перед нами обратная задача – добиться того, чтобы D оказалась меньше 3/2. Для получения более гладких берегов нам необходим более гладкий рельеф и более гладкие вертикальные сечения.
К счастью, в предыдущей главе мы получили хорошую подготовку. Для построения модели вертикальных сечений я заменил броуновскую функцию из прямой в прямую ее дробным вариантом и убедился в том, что существуют случайные функции BH(P) из плоскости в прямую, обладающие такими сечениями. Размерность D поверхностей в этом случае равна 3?H (см. [3]), а для линий уровня и вертикальных сечений D=2?H.
Таким образом, мы оказываемся избавлены от каких бы то ни было трудностей в моделировании и можем получить любую размерность, какую бы ни потребовали эмпирические данные.
Определение D. Исходя из данных Ричардсона (см. главу 5), можно ожидать, что размерность «типичной» береговой линии будет близка к 1,2, а размерность рельефа – к 2,2. Следовательно, в большинстве случаев нас вполне удовлетворит параметр H, равный 0,8, - пример такого рельефа можно видеть на рис. 371. Однако для описания некоторых конкретных участков земной поверхности понадобятся и другие значения. Значения D~2,05 описывают рельеф, в котором преобладают очень медленно изменяющиеся компоненты. Когда такой компонент представляет собой широкий склон, рельеф имеет вид неровного наклонного плато, а береговая линия отличается от прямой лишь наличием незначительных неправильностей. Вблизи вершины горы рельеф похож на неровный конус, а береговая линия – на несколько неправильный овал.
Потенциальной полезностью обладают и рельефы с размерностью D, близкой к 3, однако их довольно трудно подобающим образом передать на рисунке. Достаточно заметить, что изображенная на рис. 377 береговая линия с D~3 напоминает затопленную аллювиальную равнину. Очевидно, что в инструментарии строителя статистических моделей найдется место для всех значений параметра H.