ЛАКУНАРНОСТЬ КАНТОРОВОЙ ПЫЛИ

We use cookies. Read the Privacy and Cookie Policy

Понятие лакунарности (в отличие от понятия сукколяции) имеет смысл и на прямой, а значит, подтверждение приведенных в предыдущих разделах положений проще всего получить на примере линейной пыли. Из главы 8 нам известно, что размерность D канторовой пыли C на интервале [0,1] может достигать любого значения между 0 и 1 (исключая границы) самыми различными способами и что результаты совсем не обязательно выглядят похожими друг на друга.

Это верно даже тогда, когда C разбивается на некоторое заданное количество N равных частей. В самом деле, значения D и N определяют общую для всех частей длину r=N?1/D, но никак не ограничивают их размещения внутри интервала [0,1]. Как следствие, одинаковые значения D и N (а значит, и r) могут соответствовать значительно отличающимся друг от друга распределениям частей.

Можно представить себе два крайних случая такого распределения. В первом случае все части собираются в две кучи, ограниченные, соответственно, 0 и 1. В середине при этом получается большой пустой промежуток, относительная длина которого 1?Nr=1?N1?1/D очень близка к единице. Примером такого множества может служить горизонтальное среднее сечение левого ковра Серпинского на рис. 439. В сущности, тот же эффект достигается размещением длинного пустого промежутка в любом месте интервала [0,1].

В другом крайнем случае N частей разделяются N?1 пустотами одинаковой длины (1?Nr)(N?1). Примером может служить горизонтальное среднее сечение правого ковра Серпинского на рис. 439. При случайном створаживании длины пустот почти одинаковы.

При N?1 результат первого «крайнего» построения выглядит как несколько точек, имитируя тем самым размерность D=0, тогда как во втором крайнем случае результат построения похож на «полный» интервал (размерность D=1). Можно, разумеется, сымитировать любую размерность между этими двумя крайними значениями, просто выбирая для N?1 пустот соответствующую совокупность интервалов, относительная длина которых составляет в сумме 1?Nr.

Различие между крайними случаями возрастает пропорционально увеличению значений N, 1/r и b. По внешнему виду минимально лакунарного фрактала с большим значением N довольно сложно определить его фрактальную размерность. При малых же значениях N сделать это очень легко. Таким образом, угадывание размерности D по одному лишь внешнему виду фрактала имеет свои ограничения. Занятие это ни в коем случае не является пустым времяпровождением (и мы совсем недаром посвятили ему столько места в предыдущих главах), однако в случае галактик оно приводит к неверным результатам.

Некоторую ясность в этот вопрос вносит по необходимости «изгнанный» в главу 39 раздел, посвященный нелакунарным фракталам. При ближайшем рассмотрении оказывается, что основной характеристикой нелакунарного фрактала является его размерность подобия (которая, как мы убедимся, равна 1), а вовсе не хаусдорфова размерность. Здесь эти две размерности отличны одна от другой, причем последняя является более уместным воплощением фрактальной размерности.