ТОПОЛОГИЯ ТВОРОГА: КЛАСТЕРЫ
Рискуя показаться занудным, все же позволю себе повториться: фундаментальные неравенства - D<2 для галактик (глава 9) и D>2 для турбулентности (глава 10) – являются не топологическими, но фрактальными.
При неслучайном створаживании в E?2 (см. главы 13 и 14) топология предельного множества однозначно определяется выбранным в начале процесса генератором. Любой ковер Серпинского (D<DT=1) представляет собой связной творог, а любая губка (D<DT=1) или пена (D>DT=2) - пространственный связной творог. Остальные твороги – это либо ? - кластеры, либо пыли. Таким образом, при E=3 и D>2 (т.е. в тех случаях, которые интересуют исследователей турбулентности) неслучайный каскад может привести либо к DT=0 (пыль), либо к DT=1 (кривые или ? - кривые), либо к DT=2 (поверхности или ? - поверхности). Когда же E=3, а D<2 (этими случаями, как правило, занимается астрономия), топологическая размерность DT может быть равна либо 0, либо 1.
Случайное же створаживание использует статистически смешанный генератор; о топологии предельного множества в этом случае можно говорить лишь «почти наверное» (см. конец главы 21). Сама неточность такого створаживания делает его настолько простым, что существенным становится тщательно исследовать имеющиеся в нем на этот счет предсказания. Наше теперешнее знание складывается из доказанных фактов и выведенных из косвенных свидетельств умозаключений.
Критические размерности. Топологическая размерность DT творога дискретно изменяется, когда значение D пересекает определенные критические пороги, которые мы будем обозначать как Dкрит,D2крит,...,D(E?1)крит. Иными словами, почти невозможно встретить смешанный творог, т.е. такой, который состоял бы из отдельных частей с различной размерностью DT.
Порог Dкрит - самый важный. Он, кроме того, является верхним пределом для тех значений D, при которых данный творог почти наверняка представляет собой пыль, а также нижним пределом для тех значений D, при которых данный творог почти наверняка распадается на бесконечное количество непересекающихся участков, каждый из которых представляет собой связное множество. По причинам, изложенным в главе 13, эти участки называются контактными кластерами.
Следующий порог, D2крит, отделяет значения D, при которых творог представляет собой ? - кривую, от тех, при которых он становится ? - поверхностью, и т.д. Если (или когда) мы всерьез займемся исследованием топологии сыворотки, она, вполне возможно, одарит нас новыми критическими порогами.
Размерность кластеров. Когда D>Dкрит, фрактальная размерность контактных кластеров Dc<D. По мере уменьшения значения D от E до Dкрит размерность кластеров Dc сначала уменьшается от E до некоторого Dc min, а затем резко падает до нуля.
Распределение размеров кластеров. Распределение Pr(?>?), Pr(A>a) и т.д. можно получить путем простой замены Nr на Pr с соответствующих формулах главы 13.
Пределы для Dкрит и D2крит. Очевидно, что Dкрит?1 и D2крит?2. В следующем разделе доказывается, что для порога Dкрит существует верхний предел, меньший E, из чего можно заключить, что вышеприведенные определения и в самом деле имеют вполне конкретный смысл.
Кроме того, существуют и более связанные нижние пределы, не зависящие от b. Чуть позже я покажу, что достаточным условием для DT=0 является D<?(E+1). Следовательно, Dкрит>?(E+1)>1. Достаточным же условием для равенства DT либо 0, либо 1, является D<?E+1. Следовательно, D2крит>?E+1>2.
При E=3 находим D<?(E+1)=2, что вполне согласуется (даже с запасом) как со значением Фурнье – Хойла D=1, так и с эмпирическим значением для галактики, D~1,24. Таким образом, случайный творог с любым из этих значений D представляет собой пыль – чего мы, собственно, от него и добивались.
Условие D<?E+1 дает при E=3 размерность D<2,5. Это пороговое значение (как ни странно) также хорошо вписывается в нашу картину и вполне соответствует оценке размерности носителя турбулентной перемежаемости. Опыт подсказывает, что достаточные условия, полученные с помощью приближенных методов, редко бывают оптимальными. Следовательно, можно предположить, что, согласно модели створаживания, носитель турбулентности должен представлять собой нечто меньшее, чем участок поверхности.
Отыскание нижних пределов. Существование нижних пределов обусловлено тем фактом (см. главу 13), что контактные кластеры в твороге возникают там, где сливается содержимое соседних ячеек. Рассмотрим в этой связи пересечение творога с плоскостью, перпендикулярной некоторой оси с координатой вида ab??, где ? и ? - целые числа. Известно, что при D>1 существует положительная вероятность того, что это пересечение непусто. Однако для слияния необходимо перекрытие между частичными вкладами в пересечение соседних ячеек с общей стороной, длина которой равна b??. Если эти вклады непусты, то они статистически независимы друг от друга; следовательно, размерность их перекрытия формально определяется выражением D*=E?1?2(E?D)=2D?E?1.
Если D*<0 (т.е. если D<?(E+1)), то вклады не перекрываются. Следовательно, данный творог никак не может содержать в себе непрерывную кривую, пересекающую нашу плоскость, и DT<1.
Если D*<1 (т.е. если D<?E+1), то перекрытие вкладов (при условии, что оно существует) не может содержать кривую. Следовательно, творог не может содержать в себе непрерывную поверхность, пересекающую плоскость, и DT<2.
При D*<F, где F>1 (т.е. при D<?(E+1+F)), аналогичное рассуждение исключает возможность существования какой бы то ни было гиперповерхности с размерностью DT=F.
С учетом этих результатов не составляет большого труда завершить доказательство приведенных в предыдущем подразделе неравенств: если творог содержит в себе кривую (или поверхность), то любая точка P на этой кривой (поверхности) содержится внутри блока со стороной вида b??, который кривая (поверхность) пересекает в некоторой точке (или кривой). Можно утверждать, что таких точек (или кривых) почти наверняка не существует при D<?(E+1) (или при D<?E+1).