4. СЛУЧАЙНОЕ ВЗВЕШЕННОЕ СТВОРАЖИВАНИЕ [378, 376]

We use cookies. Read the Privacy and Cookie Policy

В работах [378, 376] я предложил естественное и достаточно глубокое обобщение метода Безиковича, которое получило дальнейшее развитие в [254].

Воздействие каждого этапа каскада заключается в умножении плотностей в b3 субвихрях каждого вихря на одинаково распределенные и статистически независимые случайные веса Wi.

После k этапов каскада взвешенного створаживания количество вихрей, в которых оказывается сосредоточена б?льшая часть массы, составляет величину порядка bkD* (при общем количестве вихрей b3k), где

D*=?<Wlogb(r3W)>=3?<WlogbW>.

В частности, если величина W дискретна и ее возможные значения wi имеют относительные вероятности pi, имеем

D*=3??piwilogbwi.

Случай D*>0; D=D*. Мера, порождаемая взвешенным створаживанием аппроксимируемого фрактально однородной мерой с размерностью D=D*, получаемой так же, как описано в главе 23.

Случай D*<0; D=0. Количество непустых ячеек асимптотически стремится к нулю, а это значит, что предел почти наверное оказывается пустым.

В общей сложности, носитель массы аппроксимируется замкнутым множеством с размерностью D=max(0,D*).

Сечения. Аналогичным образом масса, заключенная в плоских и линейных сечениях, сосредотачивается в относительно малом количество вихрей: bD*?1 для плоских сечений (при общем числе вихрей b2) и bD*?2 для линейных сечений (при общем числе вихрей b). То есть сечения невырождены при D*>1 (и, соответственно, D*>2) и аппроксимируются фракталами с размерностями D*?1 и D*?2. Таким образом, размерности сечений в этом случае подчиняются тем же правилам, что и в случае лакунарных фракталов.

Новые случайные величины, инвариантные при взвешенном сложении. Пусть X - это случайная величина, которая асимптотически задает вес, заключенный внутри вихря любого порядка k или внутри его сечения прямой или плоскостью (размерность сечения обозначим через ?). Я показал, что величины X удовлетворяют функциональным уравнениям

,

где C=b?, величины Wg и Xg - независимые случайные величины, равенство же выражает идентичность распределения. Это уравнение представляет собой обобщение уравнения (L), рассматриваемого в разделе устойчивые по леви случайные величины и функции. Решения этого уравнения являются обобщением устойчивых случайных величин и подробнее обсуждаются в цитированных выше статьях [378, 376] и [254].