БРОУНОВСКИЙ РЕЛЬЕФ НА ПОВЕРХНОСТИ СФЕРЫ

We use cookies. Read the Privacy and Cookie Policy

Допустим теперь, что опорной поверхностью земного рельефа является сфера. К счастью, мой ментор предоставил в наше распоряжение и соответствующую броуновскую функцию BO(P) из сферы в прямую (см. [308]). Ее несложно описать, она забавна и даже обладает, возможно, некоторой значимостью. Однако мы скоро убедимся, что ее также нельзя назвать реалистичной, поскольку, согласно ее предсказанию, береговые линии имеют размерность D=3/2, - а это серьезный недостаток.

В простейшем определении функции BO(P) используются термины из теории шума – мы не будем их здесь определять, однако они, несомненно, известны многим читателям. На поверхность сферы накладывается слой белого гауссова шума, функция же BO(P) представляет собой интеграл этого белого шума по поверхности полусферы с центром в точке P.

На угловых расстояниях, меньших 60°, функция BO(P) выглядит очень похоже на броуновскую функцию из плоскости в прямую. Однако при глобальном рассмотрении сходство пропадает.

Например, у функции BO(P) есть одно поразительное свойство: в случае, когда расположенные на поверхности сферы точки P и P' диаметрально противоположны, значение суммы BO(P)+BO(P') не зависит от конкретного расположения этих точек. В самом деле, эта сумма представляет собой всего лишь интеграл, взятый по всей сфере белого шума, использованной для построения функции BO(P).

Таким образом, высокий холм в точке P соответствует всем глубоким ямам в диаметрально противоположной точке P'. Центр тяжести такого распределения не совпадает с центром опорной поверхности и вряд ли может находиться в состоянии устойчивого равновесия. Однако нам нет нужды беспокоиться: благодаря теории изостазии рассматриваемый рельеф оказывается избавлен от статической неустойчивости – и, как следствие, от слишком поспешного признания его непригодности в качестве модели. Теория эта утверждает, что почти твердая земная кора очень тонка под самыми глубокими океанскими впадинами и весьма толста под высочайшими горными вершинами, так что сфера, концентрическая с земной и проходящая чуть ниже глубочайших точек океана, делит кору на две почти равные части. Если согласиться с тем, что видимые горные вершины всегда следует рассматривать в сочетании с их невидимыми корнями, расположенными ниже сферы отсчета, то постоянство суммы BO(P)+BO(P') уже не обязательно предполагает наличие серьезного статического дисбаланса, хотя и остается по-прежнему удивительным.