НЕИЗБЕЖНЫЕ КРАТНЫЕ ТОЧКИ ДЕРЕВЬЕВ И, КАК СЛЕДСТВИЕ, ДВИЖЕНИЙ ПЕАНО
Неожиданно находят очевидное объяснение и многие математические свойства кривых Пеано. Чтобы объяснить кратные точки, предположим, что некто начинает движение вдоль берега реки, являющейся частью дерева рек Пеано, и движется вверх или вниз по течению, обходя даже самые маленькие притоки (причем чем уже приток, тем быстрее движение). Очевидно, что в конечном счете наш путешественник придет в точку, которая находится на другом берегу напротив точки его отправления. А поскольку в пределе река бесконечно узка, то он по существу вернется в начальную точку. Таким образом, кратные точки на кривой Пеано представляются неизбежными не только с математически логической точки зрения, но и с позиций здравого смысла. Более того, эти точки всюду плотны.
Неизбежно также, что некоторые точки он посетит более чем дважды, так как в местах слияния рек совпадают по меньшей мере три береговых точки. Если все слияния ограничиваются только двумя реками, нет необходимости учитывать более чем тройную кратность. С другой стороны, если мы согласны иметь точки более высокой кратности, можно обойтись и без тройных точек.
Все утверждения, высказанные в предыдущих абзацах, доказаны, и, поскольку доказательства весьма деликатны и вызвали в свое время немало бурных дискуссий, сами свойства можно было бы, по всей видимости, отнести к «техническим подробностям». Если бы не одно «но». Кто теперь будет продолжать настаивать, что чисто логический подход к упомянутым свойствам имеет хоть какие-то преимущества перед моим интуитивным подходом, основанном на здравом смысле?
Как правило, реки Пеано представляют собой не стандартные фигуры, но фрактальные кривые. Это весьма удачно для нужд моделирования, так как все, что говорилось в главе 5 относительно неспрямляемости географических кривых, в полной мере касается и берегов рек. Больше того, среди приводимых Ричардсоном данных имеются сведения и о таких государственных границах, которые частично проходят по рекам и границам водоразделов. А в цитате из Штейнгауза [539] реки и вовсе упоминаются открытым текстом. Что касается водосборных бассейнов рек, то каждый из них может быть окружен замкнутой кривой, напоминающей береговую линию и составленной из участков границы водораздела. Бассейн любой крупной реки представляет собой совокупность бассейнов более мелких рек и притоков, вдоль и поперек исчерченную этими самыми реками и притоками, однако для исчерпывающего описания столь сложной на первый взгляд структуры нам необходимы всего лишь несколько заполняющих плоскость кривых, ограниченных кривыми фрактальными.