РОЛЬ САМОПОДОБНЫХ ФРАКТАЛОВ

We use cookies. Read the Privacy and Cookie Policy

Как я уже говорил, меня не удивляет тот факт, что на сегодняшний день по-настоящему исследованы очень немногие геометрические аспекты турбулентности, так как ученые имели в своем распоряжении только евклидовы методы. Чтобы избежать накладываемых ими ограничений, многие использовали в своих описаниях доевклидову терминологию. Например, в трудах по перемежаемости наблюдается необычно частое употребление таких «терминов», как пятнистый и комковатый, а Бэтчелор и Таунсенд [19] полагают, что «существует четыре возможных категории фигур: пузыри, пруты, бруски и ленты». Некоторые лекторы используют также (правда, чаще в устной речи) такие термины, как фасоль, спагетти и салат — образная терминология, не скрывающая мощи стоящей за ней геометрии.

Что касается тех исследований, которые я вел с 1964 г. и впервые представил на Киотском симпозиуме 1966 г. (см. [353]), то они усовершенствуют классический геометрический инструментарий добавлением в него самоподобных фракталов.

Отстаивать использование фракталов — шаг довольно новый и радикальный, однако обязать фракталы турбулентности быть самоподобными вполне укладывается в ортодоксальные рамки, поскольку само понятие самоподобия было впервые введено в обиход для описания турбулентности. Пионером в этой области выступил Льюис Фрай Ричардсон, с которым мы познакомились в главе 5. В 1926 г. [491] Ричардсон ввел концепцию иерархии вихрей, связанных каскадным процессом. (См. также главу 40.)

Кроме того, именно в контексте турбулентности теория каскадов и самоподобия достигла своих прогнозистских триумфов в период между 1941 и 1948 гг. Главными действующими лицами здесь были Колмогоров, Обухов, Онсагер и фон Вайцзекер, однако традиция связывает достижения этого периода только с именем Колмогорова. Как бы то ни было, где-то между Ричардсоном и Колмогоровым в теории турбулентности произошел некоторый почти незаметный сдвиг.

Если концепция самоподобия вытекает из рассмотрения доступных визуальному восприятию вихрей, то теория Колмогорова уже является чисто аналитической. Фракталы же позволяют применить методы самоподобия к геометрии турбулентности.

Фрактальный подход следует сопоставить с тем своеобразным фактом, что пузыри, пруты, бруски и ленты, составлявшие вчерашние варианты выбора, не самоподобны. Это, очевидно, и послужило причиной появления высказываний в том смысле, что выбор «примитивен» и что необходимы какие-то промежуточные варианты (см., например, [282]).

В голову приходят некоторые возможные произвольные изменения в стандартных формах специально для данного случая. Например, можно расщепить пруты на шнуры, окруженные свободно болтающимися прядями (вспомните аналогичную ситуацию с кильватерными или реактивными струями), и нарезать из брусков тонкие листы с отделяющимися слоями. Можно даже как-нибудь добиться самоподобия этих прядей и слоев.

Однако такое искусственное введение самоподобия никем до сих пор не было предпринято, и я, со своей стороны, считаю это занятие как неперспективным, так и малоприятным. Я предпочитаю следовать совершенно другим путем, предоставляя самому процессу генерировать и общие формы областей, и подробности структуры прядей и слоев. Поскольку в элементарных самоподобных фракталах отсутствует понятие привилегированного направления, мы не будем затрагивать (пока) все те интересные геометрические задачи, которые возникают при комбинации турбулентности и интенсивного движения всей системы.

< Обухов [454] и Колмогоров [277] представили в 1962 г. первые аналитические исследования перемежаемости. По своему непосредственному воздействию эти работы почти догнали работы тех же авторов 1941 г. [453, 276], однако в них имеются серьезные ошибки, и вряд ли можно говорить о сколько-нибудь значительной долгосрочной научной ценности этих работ. См. [367, 378, 387] и [280]. ?