«НОВЫЕ МЕТОДЫ СТАТИСТИЧЕСКОЙ ЭКОНОМИКИ» [342]
Гиперболические законы, аналогичные распределению Парето, были позднее обнаружены во многих отраслях экономики, а на объяснение их столь широкой распространенности потрачены немалые усилия. Однако позвольте мне прежде описать один еретический подход к этой задаче.
В такой области, как экономика, ни в коем случае нельзя забывать о том, что «данные», которыми нам приходится оперировать, представляет собой весьма разнородную смесь. Поэтому распределение данных является результатом совместного действия базового фиксированного «истинного распределения» и в высшей степени изменчивого «фильтра». В [342] я отмечаю, что асимптотически гиперболические распределения с D<2 очень «крепки» в этом смысле, т.е. многие самые разнообразные фильтры практически не изменяют их асимптотического поведения. С другой стороны, почти все прочие распределения таким свойством не обладают. Следовательно, гиперболическое истинное распределение можно наблюдать всегда: всевозможные наборы искаженных данных предполагают одно и то же распределение с одинаковым показателем D. При попытке применить тот же подход к большинству других распределений мы получим «хаотические» несовместимые результаты. Иными словами, практической альтернативой асимптотически гиперболическому распределению является не какое-то другое распределение, но хаос. Поскольку хаотические результаты, как правило, не публикуются (а если публикуются, то не замечаются), факт широкой распространенности асимптотически гиперболических распределений не представляет собой ничего неожиданного и мало может сообщить нам об истинной их распространенности в природе.