ТРОИЧНЫЙ КОВЕР СЕРПИНСКОГО

We use cookies. Read the Privacy and Cookie Policy

Перейдем от треугольных решеток к прямоугольным. Они демонстрируют большое разнообразие возможных конструкций — кривых на плоскости и в пространстве и поверхностей в пространстве. Что касается кривых, то они, несмотря на внешнее сходство с салфеткой Серпинского, весьма отличны от нее с фундаментальной точки зрения на ветвление, к которой мы еще вернемся после определения этих кривых.

Буквальное распространение на плоскость канторова метода удаления средних третей описано в пояснении к рис. 205; инициатором такого построения служит квадрат. Фрактал, получаемый бесконечным повторением этого процесса, широко известен под непритязательным названием троичного ковра Серпинского. Его размерность D=ln8/ln3=1,8927.