РАСШИРЕННОЕ ПОНИМАНИЕ ИНВАРИАНТНОСТИ ПРИ СДВИГАХ

We use cookies. Read the Privacy and Cookie Policy

Тот факт, что прямая способна при продольном смещении отображаться на самое себя, выражается фразой: «Прямая инвариантна при сдвигах». В главе же 22 заостряется внимание на том, что канторовы пыли обладают одним в высшей степени неприятным свойством: они не инвариантны при сдвигах. Например, оригинальная троичная пыль C и результат ее смещения на 1/3 даже не пересекаются. А вот пыль C и результат ее смещения на 2/3 пересекаются, причем пересечение содержит половину точек множества C.

Если же мы будем сдвигать максимально лакунарные канторовы пыли с N?1, то сколько-нибудь значительное перекрытие можно будет получить только при величине смещения, близкой либо к 1, либо к 0. В случае минимально лакунарных пылей, напротив, допустимая величина смещения может представлять собой (приблизительно) любое число, кратное 1/N.

Иными словами, для успешного применения канторовой пыли понятия инвариантности при сдвигах следует весьма значительно ослабить требования этой инвариантности, однако при низкой лакунарности пыли можно обойтись гораздо меньшим ослаблением.

В конце главы 22 мы пришли к выводу, что применить к фракталам инвариантность при сдвигах и космологический принцип возможно, если фракталы сделать случайными, а понятие инвариантности переформулировать к «условному» виду. Эта переформулировка, собственно, и является главной причиной введения случайных фракталов.