ЗНАЧЕНИЯ D И Δ НАСТОЯЩИХ ДЕРЕВЬЕВ
Значение D=3. Читателю хорошо известно, что наибольшая возможная площадь поверхности листьев дерева может быть достигнута в том случае, если они образуют поверхность, заполняющую пространство. В качестве приближенной модели можно взять куст, листья или иголки которого располагаются очень близко к любой точке внутри определенного ограниченного объема (за исключением, пожалуй, мертвого остова, который нам не виден). Для пропускания же внутрь солнечного света и воздуха вполне достаточно очень небольшой разницы 3?D.
Зонтики. Тем не менее, различные ограничения, налагаемые на архитектуру дерева, могут помешать реализации равенства D=3. Единственной стандартной альтернативой является стандартная же поверхность с размерностью D=2: например, поверхность сферического «зонтика», скрывающая под собой сердцевину, состоящую из ветвей без листьев. Вот почему Хорн [223], ограничивающийся стандартной геометрией, допускает как D=3, так и D=2. Как бы то ни было, я не вижу явных преимуществ в структуре с D=2; более того, чтобы концы ветвей образовали в итоге сферический зонтик, рост этих самых ветвей должен следовать весьма причудливым правилам.
С другой стороны, взяв на вооружение фрактальную геометрию, «зодчий деревьев» получает гораздо б?льшую творческую свободу. Во-первых, «многократно зубчатые» поверхности крон многих больших деревьев можно представить в виде масштабно-инвариантных фракталов с размерностью D между 2 и 3, причем разным значениям D будут соответствовать различные формы. На ум снова приходят цветная капуста и брокколи, но о них мы поговорим чуть позже, так как они представляют собой несколько иной случай. Можно вспомнить и о ползучих растениях, скудный лиственный покров которых образует поверхность с размерностью меньше 2 (а еще подумайте о том, что деревья бонсаи, которым так старательно придается «гармоничная» форма, также фрактальны, D<3).
Значение ?=2. Правило Леонардо да Винчи, процитированное в начале этой главы, не годится для легких (?=3) и артерий (?=2,7), однако анатомия растений отличается от анатомии человека. Значение ?=2 основывается на представлении о дереве как о совокупности неветвящихся труб фиксированного диаметра, соединяющих корни с листьями и занимающих неизменную долю поперечного сечения каждой ветви. Циммерман говорит, что японцы называют такое представление «трубчатой моделью».
Измерение ?. Эмпирические свидетельства оказываются на удивление скудными и косвенными. Мюррей ([439], процитировано также в [568]), установил опытным путем, что вес ветви пропорционален ее диаметру, возведенному в степень M, где M~2,5, хотя я бы сказал, что обнаруженное им M было несколько больше. Он утверждает также, что M=?, однако мой анализ дает иное соотношение: M=2+?/D. При D=3 значение Леонардо ?=2 соответствовало бы M~2,66, тогда как M~2,5 дает всего лишь ?=1,5. Некоторое время назад профессор Макмагон любезно передал мне данные относительно трех «деревьев Макмагона», использованные при написании статьи [423], и я, таким образом, получил возможность лично проанализировать эти данные. Обозначим d1/d через x, а d2/d через y и отыщем такой показатель ?, чтобы значения X=x? и Y=y? принадлежали прямой X+Y=1. К сожалению, разброс опытных данных чрезвычайно велик при любом ?, и оценка величины ? с неизбежностью оказывается недостоверной. Тем не менее, этот результат не опровергает значения ?=2, лишь предполагает чуть меньшее ?. В настоящий момент мы, пожалуй, можем благополучно заключить, что показатель ?=2 является достаточно разумным приближением, не забывая о том, что древесная архитектура придерживается консервативных принципов, поэтому дочерние ветви оказываются несколько тоньше, чем это, строго говоря, необходимо.
Следствия равенств D=3 и ?=2. Следствие первое: площадь листьев на ветви пропорциональна как занимаемому ветвью объему, так и поперечному сечению ветви. Этот вывод был сделан Хубером в 1928 г. и, действительно, подтверждается эмпирически.
Следствие второе: отношение квадрата высоты дерева к кубу диаметра ствола постоянно для любого вида деревьев и равно отношению куба линейной меры объема впитываемой ветвью жидкости к квадрату диаметра ветви. Можно также ожидать, что у деревьев разных видов величина этого отношения различается незначительно. Заметим, что сила, прилагаемая ветром к лишенному листьев дереву (или к дереву с листьями) приблизительно пропорциональна площади поверхности ветвей (или, соответственно, ветвей и листьев), а также пропорциональна кубу высоты дерева в данной модели. Сопротивление же ствола ветру пропорционально квадрату его диаметра. Следовательно, можно предположить, что отношение этих величин представляет собой коэффициент прочности дерева.
В зонтичном дереве с ?=2 и D=2 отношение квадрата высоты дерева к кубу диаметра его ствола постоянно, равно как постоянно и более общее отношение (высота дерева)D/(диаметр ствола)?.
Отступление о костях задних ног. Отношение между высотой и диаметром, характеризующее настоящие деревья с D=3 и ?=2, справедливо также и для скелетов животных, только буквой d здесь обозначается диаметр главной опорной кости.