АРИСТОТЕЛЬ И ЛЕЙБНИЦ, ВЕЛИКАЯ ЦЕПЬ БЫТИЯ, ХИМЕРЫ И ФРАКТАЛЫ
В серьезных научных работах давно уже не требуется обязательная ссылка на Аристотеля и Лейбница. Однако раздел этот, как ни странно, написан отнюдь не шутки ради. Некоторые фундаментальные понятия теории фракталов можно рассматривать как математическую реализацию тех восходящих еще к Аристотелю и Лейбницу идей, одновременно глубоких и широких, которые пронизывают всю нашу культуру и оказывают воздействие даже на людей, считающих себя невосприимчивыми к философским веяниям.
Первую нить я обнаружил у Бурбаки [49]: идея дробного интегро – дифференцирования, рассмотренного нами в главе 27, пришла Лейбницу в голову вскоре после того, как он разработал свою версию дифференциального исчисления и предложил обозначения dkF/dxk и (d/dx)kF . В письме Лейбница де Лопиталю от 30 сентября 1695 года (см. [296], II, XXIV, с. 197 и далее) сказано (в моем вольном переводе) приблизительно следующее: «Похоже, Иоганн Бернулли уже сообщил тебе о том, как я рассказал ему об одной удивительной аналогии, используя которую, можно сказать, что последовательные дифференциалы образуют в некотором роде геометрическую прогрессию. Можно задаться вопросом, каким же будет дифференциал, обладающий дробным показателем. Оказывается, такой дифференциал можно выразить в виде бесконечного ряда. Этот результат, на первый взгляд, далек от геометрии, которой пока еще ничего неизвестно о дробных показателях, однако можно предположить, что настанет день, когда эти парадоксы принесут какие-нибудь полезные плоды, - совершенно бесполезных парадоксов, как тебе известно, не бывает. Идеи, малозначащие сами по себе, вполне могут дать толчок идеям более значительным и красивым». Дальнейшее развитие эти соображения получили в письме Лейбница Иоганну Бернулли от 28 декабря 1695 года (см. [296], III.I, с. 226 и далее).
В то время как Лейбниц много размышлял о вышеупомянутых материях, Ньютону они, похоже, вовсе не приходили в голову – по крайней мере, в связи с дифференциальным исчислением – и тому есть веская причина. В самом деле (см. «Великую цепь бытия» Лавджоя [318]), Лейбниц глубоко и искренне верил в то, что он называл «принципом непрерывности» или «принципом полноты». Аристотель в свое время также исповедовал аналогичный принцип, полагая, что разница между любыми двумя живущими видами животных можно заполнить другими видами так, что один вид будет непрерывно перетекать в другой. Он весьма интересовался этими «промежуточными» видами животных и даже ввел для их обозначения особый термин (о котором я узнал от Дж. Э. Р. Ллойда) - ?????????????v. (См. также раздел в этой главе под названием natura non facit saltus …)
В принципе непрерывности находит свое отражение (или оправдание?) вера во всякого рода «недостающие звенья» и «переходные ступени», включая и химер в том смысле, какой это слово имело в греческой мифологии: тварей с львиными головами, козлиными телами, драконьими хвостами и вдобавок плюющихся огнем! (Наверное, не стоило мне говорить о химерах именно в этой книге. Если мне теперь случится прочесть где-нибудь, что мое эссе представляет собой фрактальное обоснование химерических понятий, я знаю, кого мне за это благодарить.)
Современная же атомистическая теория в поисках далеких предков стремится привлечь наше внимание к противоположной традиции в греческой философии, а именно – к учению Демокрита. И конфликт между этими двумя противоположными силами продолжает играть центральную созидательную роль в интеллектуальном развитии человечества. Отметим, что канторову пыль можно рассматривать в этой связи как своего рода миротворца, сглаживающего напряженность древнего парадокса: она является бесконечно делимой, но не непрерывной. А вот древнееврейская культурная традиция химер либо отвергает, либо вовсе игнорирует, что продемонстрировано под весьма удивительным углом в работе [532].
В биологических химер никто больше не верит, однако в данном случае это неважно. В математике идея Аристотеля находит приложение в интерполяции последовательности целых чисел отношениями целых чисел и далее – пределами отношений целых чисел. При таком подходе любой феномен, определяемый последовательностью целых чисел, является кандидатом на интерполяцию. Таким образом, к столь ранним рассуждениям о дробных дифференциалах Лейбница подтолкнула идея, составляющая суть его научного мировоззрения (и лежащая в основе его круговой упаковки, см. главу 18).
А что же Кантор, Пеано, Кох и Хаусдорф? Разве первые трое, создавая свои «чудовищные» множества, не занимались, по сути, воплощением в действительность математических химер? И разве не следует нам рассматривать хаусдорфову размерность как шкалу для упорядочения этих самых химер? Сегодня математики не читают Лейбница и Канта, но в 1900 г. они это делали. Можно представить себе, например, как Хельге фон Кох, прочтя стихотворение Джонатана Свифта, приведенное в предыдущей главе, в разделе о Ричардсоне, строит свою снежинку таким приблизительно манером. Исходный треугольник, изображенный на рис. 70, он определяет как «большую блоху». Затем точно посередине каждого бока большой блохи помещает меньшую треугольную блоху; затем рассаживает еще меньших треугольных блох, где только можно на спинах старых или новых блох. И продолжает эту процедуру, «как говорят, ad infinitum». Я не знаю, насколько нарисованная мною картина близка к действительности, она лишь иллюстрирует мою мысль. Кох не мог впитать современных ему культурных течений, у истоков которых стоял не кто иной, как Лейбниц. А в пародии на Свифта находят свое отражение некоторые популярные толкования принципа Лейбница.
Теперь оставим математиков, занятых искусством ради искусства (и убежденных, говоря словами Кантора, в том, что «суть математики есть свобода»), и перейдем к людям, которые воспевают Природу, пытаясь ей подражать.
Уж они-то о химерах не мечтают, скажете вы – и будете не правы. Многие из них именно этим и занимаются. В главе 10 мы говорили о практических исследователях турбулентности, ломающих себе головы в попытке решить, концентрируется изучаемый ими процесс на «фасоли», на «спагетти» или на «салате», раздраженных тем, что ответ на вопрос зависит от способа задания вопроса, и под конец требующих каких-то «промежуточных» форм, природа которых объединяет в себе свойства линий и поверхностей. В главе 34 упоминается о другой группе искателей «промежуточного», обретающихся среди исследователей галактических скоплений; этим ученым приходится описывать текстуру определенных фигур как «потокообразную», хотя упомянутые фигуры совершенно ясно состоят из отдельных точек. Не будет ли уместным открыть этим трезвомыслящим искателям, искренне полагающим, что старинные письмена и древнегреческие кошмары не имеют к ним никакого отношения, глаза на то, что ступают они по проторенной дорожке, ведущей к химерам?
Еще одна ниточка, указывающая на родство между канторианцами и ричардсонианцами, обнаружилась как раз в исследованиях кластеризации звезд и галактик. Здесь нужно отметить, что тема эта весьма деликатна, и тому, кто решит заняться отысканием концептуальных корней, следует быть весьма осторожным, поскольку профессиональные астрономы терпеть не могут признавать наличия какого бы то ни было влияния со стороны всякого рода звездочетов – самоучек, «какими бы привлекательными и величественными не представлялись на первый взгляд их измышления» (цитируя Саймона Ньюкома). Этой нерасположенностью, наверное, и объясняется, почему авторство первой полностью описанной иерархической модели обычно приписывается Шарлье, астроному, а не Фурнье д'Альбу (см. соответствующий раздел главы 40) или Иммануилу Канту.
Замечания Канта об отсутствии однородности в распределении материи красноречивы и предельно ясны. Оцените эти блистательные строки (которые, спешу предупредить, вполне способны привить вам вкус к чтению книг вроде [258] или [438]): «Та часть моей теории, которая дает ей наибольшее очарование … включает в себя следующие идеи … . Вполне естественно … рассматривать туманные звезды как … совокупности многих звезд …. Их с полным правом можно считать целыми вселенными или, если можно так выразиться, Млечными Путями …. Можно далее предположить, что эти вышние вселенные каким-либо образом соотносятся одна с другой и посредством этого взаимного соотношения составляют еще более грандиозную совокупность, … которая, возможно, также является лишь одним из членов нового сочетания чисел! Мы видим только первые члены постепенно расширяющейся соотнесенности миров и совокупностей миров; и начало этой бесконечной прогрессии позволяет нам уже сейчас делать предположения относительно целого. Не существует пределов, лишь бездна … безграничная бездна».
Кант возвращает нас к Аристотелю и Лейбницу, а описанные ранее прецеденты могут объяснить, почему Кантор и Ричардсон так часто оказываются похожи друг на друга (по крайней мере, на мой взгляд). Для усиления драматического эффекта, позвольте мне обратиться к опере Верди «II Trovatore» и перефразировать кое-какие из последних слов Асусены, адресованных Луне, «Egl'era tuo fratello».
Эти великие вожди великих движений презирали друг друга и яростно сражались между собой, однако по своим интеллектуальным корням они – братья.
Разумеется, история не в состоянии объяснить тайны непостижимой эффективности математики. Тайна просто-напросто уходит вперед и меняет свой характер. Как же получается так, что смесь из предположений, результатов наблюдений и поисков интроспективно удовлетворительных структур, каковой смесью, по сути, являются рассматриваемые нами здесь древние писания, служит неисчерпаемым источником концепций настолько глубоких, что они до сих пор вдохновляют математиков и физиков на поразительно эффективные разработки (несмотря на то, что и самим этим концепциям уже, казалось бы, пора умереть от старости, и на то, что не выдержали испытания временем и более качественные наблюдения)?