ТРЕМА – ГЕНЕРАТОРЫ. ИЗОТРОПИЯ

We use cookies. Read the Privacy and Cookie Policy

Термин форма тремы, использованный во вступительном разделе, связан с понятием трема – генератора. Мы, конечно же, уже знакомы с термином генератор, который встречался нам в нескольких предшествующих главах. Мы также помним о том, что ломаные генераторы канторовых и коховых фигур, равно как и трема-генераторы фигур Серпинского, определяют одновременно и саму фрактальную фигуру, и ее размерность D. Здесь же, обратите внимание, трема – генератор определяет все, кроме D.

Неслучайный трема – генератор. Такой генератор представляет собой открытое множество с некоторым, произвольно выбранным внутри него, центром, причем длина (площадь, объем) этого множества равна 2 (? или 4?/3, соответственно). А тремы – это перемасштабированные версии описанного генератора. Положения и размеры трем случайны, а распределение вероятностей совпадает с аналогичным распределением в главах 31 и 33.

В случае E=1, например, количество трем, длина которых превышает r, а центр расположен внутри интервала длины ?t, по-прежнему является пуассоновской случайной величиной с ожиданием (E?D*)?t/?. Кроме того, как показано в [132], остается справедливой и хорошо известная нам формула для определения размерности D=max(D*,0) - правда, с некоторыми нестрогими ограничивающими допущениями относительно формы трема – генератора. (Отдельного рассмотрения заслуживает вопрос о причине возникновения этих ограничивающих допущений – присущи ли они трема – фракталам изначально, или мы обязаны ими методу доказательства.)

Ограниченность генератора. Поскольку теоретической целью построения с использованием трем является создание глобальных структур из локальных взаимодействий, разумно будет ввести допущение о локальности (т.е. ограниченности) трем. Если же тремы не ограничивать, то они могут привести к весьма неожиданным сюрпризам. На рис. 398 представлено дальнейшее обобщение модели трем.

Определение пустот. Пустой промежуток теперь представляет собой не объединение трем, но объединение наибольших открытых компонентов трем.

Неслучайная изотропия. Для обеспечения изотропности генератора мы должны иметь возможность выбирать точку отсчета таким образом, чтобы генератор представлял собой множество точек, удовлетворяющих следующему условию: расстояния между этими точками и точкой отсчета должны принадлежать некоторому множеству на положительной вещественной оси (обычно это набор заданных интервалов). Изотропный случай является самым простым и наиболее хорошо изученным.

Однако неизотропия здесь также не исключается. В частности, фрактальную пыль можно сделать асимметричной относительно прошлого и будущего.

Случайный трема – генератор. Такой генератор представляет собой частично или полностью случайное множество, длина (площадь, объем) которого равна единице. Было бы неплохо тщательно рассмотреть вопрос о применимости к данному случаю теоремы, доказанной в [132].

Наименьшего уровня случайности можно достичь, если выбрать из процесса, генерирующего случайные множества, какую-то ограниченную совокупность элементов и отождествить с этой совокупностью все наши тремы (вплоть до смещения и размера). Следующий практически полезный уровень случайности достигается путем добавления случайного поворота, выбираемого для каждой тремы отдельно и независимо от других. Еще более общая картина возникает, когда каждая трема является результатом независимой выборки из какого-либо генерирующего случайные множества процесса. Выбранные множества не обязательно должны иметь одинаковый объем, объемы выравниваются на следующем этапе. Затем выборки поворачиваются. Можно представить случай, когда повороты зависят один от другого, однако я пока таких случаев не рассматривал.

Случайная изотропия. На первом из вышеописанных альтернативных уровней случайности изотропия требует инвариантности выборки при повороте. На втором – выборка поворотов должна иметь однородное распределение. На третьем же необходимо лишь, чтобы инвариантным при повороте был сам процесс.

Стратификация. Исходя из вышеприведенных определений, длина (площадь, объем) трем, в принципе, допускает стратификацию, т.е. ограничение коэффициента подобия значениями вида rk. Однако при этом сложно провести границу между эффектами стратификации и обобщения форм трем, так что от стратификации придется отказаться.