ДЕЛЬТА – ДИСПЕРСИЯ КОЛМОГОРОВА
В качестве модели турбулентности дельта – дисперсия Бюргерса не выдерживает никакой критики, причем самым убийственным из ее недостатков является то, что она не соответствует действительности с точки зрения анализа размерностей. Согласно выдержанной в размерностном духе аргументации, выдвинутой Колмогоровым (а также, одновременно с ним, Обуховым, Онсагером и фон Вайцзекером), возможны только два варианта: либо дельта – дисперсия универсальна, т.е. одинакова независимо от условий эксперимента, либо в ней нет никакого смысла. Для того чтобы быть универсальной, дельта – дисперсия должна быть пропорциональна |?P|?. Подобные выводы можно встретить во многих источниках, а их геометрическую природу подчеркивал еще Биркгоф [37].
После первоначальных сомнений было установлено, что колмогоровская дельта – дисперсия удивительно хорошо объясняет турбулентность в океане, атмосфере и других больших объемах. (см. [174].) Это подтверждение знаменует собой триумфальную победу абстрактного априорного мышления над беспорядочностью сырых данных. Такая победа, несомненно, заслуживает (невзирая на многочисленные оговорки, к которым мы в главе 10 добавили несколько своих) того, чтобы о ней знал не только узкий круг специалистов.
Гауссова функция с колмогоровской дельта – дисперсией также выглядит подозрительно знакомой. В настоящем контексте, относящемся к скалярной (одномерной) температуре, эта гауссова функция представляет собой дробную броуновскую функцию из З – пространства в прямую с параметром H=?. Таким образом, колмогоровское поле подразумевает антиперсистентность, тогда как земному рельефу больше по душе персистентность. Есть и более фундаментальное различие: в то время как параметр H, необходимый для представления земного рельефа, является пока чисто феноменологическим, колмогоровское H=? уходит корнями в геометрию пространства.