ГАЛАКТИКИ И МЕЖГАЛАКТИЧЕСКИЕ ПУСТОТЫ, ПОСТРОЕННЫЕ С ПОМОЩЬЮ СФЕРИЧЕСКИХ ТРЕМ

We use cookies. Read the Privacy and Cookie Policy

Хотя круговые тремы с некоторых пор обрели независимое и общепризнанное существование в виде лунных кратеров, шарообразным тремам с масштабно-инвариантным распределением приходилось поначалу довольствоваться ролью естественного приложения этого же геометрического приема к пространственному случаю. Я предположил, что шарообразные тремы смогут явиться основой для построения галактической модели, альтернативной той, что описана в главе 32. Тем самым я постулировал существование межгалактических пустот, объединяющих в себе большое количество трем и способных достигать очень больших размеров. Хорошее соответствие реальности, продемонстрированное получившейся моделью, оказалось весьма приятным сюрпризом и потребовало дальнейших теоретических (см. главу 35) и экспериментальных изысканий.

Ковариантности. Так как статистики и физики имею обыкновение доверять корреляциям и спектрам, первое испытание трема – фракталов в роли моделей скоплений галактик опирается на их корреляционные свойства. Ковариантность между двумя точками в пространстве оказывается такой же, как и в модели, основанной на случайных блужданиях, - в этом нет ничего удивительного, так как последняя модель хорошо согласуется с данными наблюдений. То же верно (как, собственно, и должно быть) и для ковариантности между двумя направлениями в небесах. Предсказываемые данной моделью ковариантности между тремя и четырьмя направлениями соответствуют реальности лучше, чем те, что дает модель случайных блужданий, однако улучшения носят чисто технический характер, и их рассмотрение едва ли отвечает нашим целям и задачам. В сущности, при определенном значении D различные модели дают одинаковые корреляции.

А теперь вспомним о том, что гауссовы феномены, включая броуновские и дробные броуновские фракталы, полностью характеризуются своими ковариантностями. Если же упомянутые феномены масштабно - инвариантны, то они полностью характеризуются размерностью D. Учитывая влияние гауссовых феноменов на мыслительные процессы, происходящие в головах статистиков, возникает сильное искушение остановиться на ковариантностях. Однако фрактальная пыль не является гауссовым феноменом, а ее размерность D оказывается неспособной описать многие важные ее свойства.

Критические размерности. Необходимо разобраться еще с одним вопросом, более фундаментальным, чем корреляция: обладают ли трема – фракталы соответствующей топологией? Для этого лучше всего воспользоваться уже испытанным в предыдущем разделе способом: Будем увеличивать значение параметра C от 0 до 3, сохраняя затравку неизменной. Пока значение C мало, DT=2, а наш фрактал представляет собой совокупность разветвленных вуалей. Когда значение D пересекает определенную границу D2крит, называемую верхней критической размерностью, вуали распадаются на нити с топологической размерностью DT=1. Когда же значение D пересекает некоторую меньшую границу Dкрит (нижняя критическая размерность), нити расползаются в пыль (DT=0) . Поскольку для моделирования скоплений галактик необходима именно пыль, важно удостовериться, что размерность Dкрит превышает известную из наблюдений величину D~1,23. Результаты проведенного мною компьютерного моделирования подтверждают соблюдение этого неравенства.

Перколяция. Надежда на то, что наш мир не более сложен, чем это необходимо, побуждает меня поверить, что условие D>Dкрит является необходимым и достаточным условием для перколяции на трема – фрактале (в смысле, описанном в главе 13).