МЕТЕОРИТЫ

We use cookies. Read the Privacy and Cookie Policy

Распределение масс падающих на Землю метеоритов исследовано достаточно тщательно (например, в [206]). Метеориты средних размеров состоят из камня, и 1 км3 пространства содержит приблизительно P(v)=10?25/v метеоритов, объемы которых превосходят v км3 .

Обычно это утверждение выражают несколько иначе, пользуясь при этом довольно путаными единицами измерения: каждый год каждый квадратный километр поверхности Земли принимает на себя удар (в среднем) 0,186/m метеоритов, масса каждого из которых превышает m граммов. Поскольку средняя плотность метеоритов в более согласованных единицах, сводится к 5,4?10?17/v метеоритов, объемы которых превосходят v км3. Кроме того, земля движется по орбите со скоростью, составляющей приблизительно 1 км за 10?9 лет – величина, обратная порядку длины траектории движения Земли вокруг Солнца, выраженному в километрах. Таким образом, пользуясь согласованными единицами измерения и округляя значения величин до их порядков (т.е. записывая 10 вместо 5,4), мы приходим к следующему выводу: за то время, пока Земля проходит в пространстве путь длиной в 1 км, на каждый квадратный километр ее поверхности приходится по 10?25/v метеоритов, объемы которых превосходят v км3. Полагая, что метеориты, сталкивающиеся с Землей по мере ее продвижения в пространстве, представляют собой репрезентативную выборку распределения метеоритов в этом самом пространстве, получим заявленный ранее результат.

Этот закон (10?25/v) формально идентичен закону C/s для лунных кратеров, однако имеется и различие: кратеры могут перекрывать друг друга, тогда как метеориты такой способностью не обладают.

Тем не менее, забавно понаблюдать, что получится, если приравнять объем v в соотношении P(v)=10?25/v к нулю и предположить, что метеориты – страшно подумать! – способны перекрывать друг друга. Если добавить сюда же невинное допущение о сферической форме метеоритов, то интересующее нас трема – множество можно будет изучать непосредственно (не прибегая к результатам, полученным в работе [132]). Сечения заполненного метеоритами пространства прямыми, случайным образом проведенными в этом пространстве, представляет собой линейные тремы, и можно показать, что количество таких интервалов, центры которых находятся внутри километрового промежутка, а длины превышают u км, равно C'?10?25/v. (C' - численный коэффициент порядка 1, которым в данном контексте можно пренебречь.) Следовательно, согласно одному из выводов главы 32, размерность линейного сечения трема – множества составляет 1?10?25. Возвращаясь от линейных сечений к исходной фигуре, прибавим к этому соотношению 2 и получим 3?D=10?25.

Этот результат – бессмыслица, так как он подразумевает, в частности, что метеориты почти заполняют пространство, несмотря даже на то, что им позволено перекрывать друг друга. Тем не менее, коразмерность 3?D=10?25 заслуживает еще одного взгляда. Допустим в первом приближении, что значение отношения 10?25/v удерживается на уровне некоторого положительного порога ?>0 и что не существует метеоритов меньшего размера. Согласно вкратце набросанному нами рассуждению, верно следующее: если и в самом деле возможно перейти к пределу ??0, то множество, свободное от метеоритов, сойдется при этом к трема – множеству с размерностью D=3?10?25 . К счастью, схождение к этому предельному множеству происходит чрезвычайно медленно, - настолько медленно, что на наблюдаемом интервале способность метеоритов к перекрытию не составляет никакой проблемы. Но – к сожалению – значение D в этом случае лишено какой бы то ни было практической значимости.