НАСТОЯЩИЕ ДЕРЕВЬЯ

We use cookies. Read the Privacy and Cookie Policy

Налюбовавшись объектами, к которым термин дерево применим только фигурально, мы возвращаемся к тем деревьям, которые изучает ботаника. «Нормальными» в данном случае представляются значения D=3 и ?=2, обусловленные аналитическими соображениями. Разумеется, они вряд ли универсальны: при столь поразительном разнообразии ботанических форм наверняка найдутся отклонения, подчас даже более интересные, чем «норма». Равенство ?=2 имеет любопытное следствие: если поставить рядом почти самоподобное дерево бронхов и дерево-растение, то ветви последнего покажутся чрезвычайно редкими. Сквозь точную модель легкого ничего нельзя разглядеть, тогда, как лишенная листвы крона дерева свободно просматривается во всех направлениях.

Причина того, что D и ? принимают целочисленные значения, соответствующие евклидовым размерностям объемных тел и поверхностей, заключается, по мнению д' Арси Томпсона, в том, что «рост дерева управляется простыми физическими законами, которые и определяют величину относительных изменений в объеме и площади». Более конкретное объяснение находим в работе [191]: «Задачу об энергетическом обмене в дереве можно упростить, представив дерево как систему, в которой необходимо оросить наибольшую возможную площадь при наименьшем производимом объеме, обеспечив одновременный отвод поглощенной энергии». Поскольку объемы и площади несоизмеримы между собой в рамках евклидовой геометрии, геометрическая задача об архитектуре деревьев является, по сути, фрактальной. Фрактальный характер этой задачи становится еще более очевидным в тех случаях, когда ни D, ни ? не являются целыми числами.