НАСКОЛЬКО ИЗВИЛИСТА РЕКА МИССУРИ?

We use cookies. Read the Privacy and Cookie Policy

Вышеизложенные соображения проливают свет и на измерение длины рек. Чтобы определить длину главной реки речного бассейна, мы аппроксимируем форму русла извилистой самоподобной кривой размерности D>1, которая начинается в точке, называемой истоком, и заканчивается в точке, называемой устьем. Если бы все реки, равно как и их бассейны, были взаимно подобны, то, согласно фрактальному соотношению между длиной и площадью, мы получили бы следующее соотношение:

(G?длина реки)1/D?(G?площадь бассейна)1/2.

Более того, исходя из стандартности площади:

(G?площадь бассейна)1/2?(расстояние до прямой от истока до устья).

Объединив эти соотношения, заключаем, что

(G?длина реки)1/D?(расстояние до прямой от истока до устья).

В высшей степени замечательно, что в уже упоминавшейся работе Хака [186] на основании эмпирических данных показано, что отношение

(G?длина реки)/(G?площадь бассейна)0,6

и в самом деле одинаково для всех рек. Из косвенной оценки D/2=0,6 получаем D=1,2 — значение, весьма напоминающее те, что дают измерения длины береговых линий. Если с помощью D измерять степень иррегулярности, то значения для локальных излучин окажутся абсолютно идентичными значениям для поворотов в масштабе всей реки!

С другой стороны, согласно наблюдениям Дж. Э. Мюллера, значение D для бассейнов с площадью более 104км2 и рек соответствующих размеров уменьшается до 1. Исходя из наличия двух различных значений D, можно предположить, что если отобразить бассейны всех рек на листах бумаги одинакового размера, то карты бассейнов малых и больших рек будут выглядеть приблизительно одинаково, в то время как карты бассейнов очень длинных рек будут почти прямолинейными. Может оказаться, что нестандартное самоподобие нарушается вблизи внешнего порога ?, величина которого составляет порядка 100 км.

Суммарная длина речного дерева. На основании вышеизложенных соображений можно также предположить, что суммарная длина всех рек в бассейне должна быть пропорциональна площади бассейна. Мне говорили, что это предположение верно, однако конкретных ссылок у меня нет.

Назад к геометрии. Для рек и водоразделов, родственных кривой «прохождения снежинки» (см. рис. 104 и 105), D~1,2618, что несколько больше наблюдаемого значения. Соответствующие размерности на рис. 106 и 107 составляют D~1,1291 — недолет.

Кривые Пеано на рис. 95 и 98 и вовсе попадают пальцем в небо, так как D=1.

Заметим, что равенство размерностей рек и водоразделов является не логической необходимостью, а всего лишь характерной особенностью некоторых конкретных рекурсивных моделей. Возьмем, например, речную сеть, объединенную стреловидной кривой (см. рис. 205) и описанную в [381]. Реки здесь имеют размерность D=1, а водоразделы — D~1,5849.