ПРЕФАКТОР РАСПРЕДЕЛЕНИЯ ПУСТОТ

We use cookies. Read the Privacy and Cookie Policy

Представляется весьма удобным измерять степень лакунарности канторовой пыли по относительной длине наибольшего пустого промежутка. В плоских же фигурах (таких, например, как представленные на рис. 439) лакунарность, с достаточной степенью точности, обратно пропорциональна отношению периметра тремы к квадратному корню из ее площади. Можно, однако, вывести и более многообещающий способ измерения лакунарности, и источником его послужит распределение размеров пустот.

Из главы 8 нам известно, что длины пустот канторовой пыли удовлетворяют соотношению Nr(U>u)?Fu?D в том смысле, что зависимость lnNr(U>u), рассматриваемая как функция от lnu, имеет график правильной ступенчатой формы. В настоящем обсуждении мы не намерены вносить какие-либо изменения в последний результат, за исключением того, что на первый план здесь выходит префактор F, которому ранее не придавалось особого значения.

Приходится признать, что данное нами определение F несколько произвольно. Можно, например, считать, что значение F относится к линии, соединяющей левые концевые точки ступеней лестницы, правые концевые точки или же средние точки. К счастью, подобные детали не имеют здесь никакого значения. По мере роста лакунарности величина префактора уменьшается, как бы мы его ни определили (в разумных пределах, конечно же). То же верно и для масштабных коэффициентов объемов и площадей, относящихся к коврам Серпинского и фрактальным пенам. Во многих случаях рост степени лакунарности происходит из-за схлопывания многих пустот в один – единственный пустой промежуток б?льшего размера. При этом график ступенчатой функции «скользит» в направлении на 4 ч 30 мин, т.е. в направлении, более крутом, чем общий наклон лестницы ?D/E, вызывая тем самым вышеупомянутое уменьшение F.

Таким образом, мы видим, что в пределах довольно обширного (и все же особого) класса фракталов, куда входят канторовы пыли и ковры Серпинского, лакунарность можно измерить (а стало быть, и определить) с помощью префактора F.

Применимость этого определения, однако, весьма ограничена. Оно не годится уже для случая, когда в середину большого центрального медальона ковра помещается другой, меньший, ковер. Следовательно, нам необходимо отыскать альтернативные определения. Самым подходящим представляется замена F более широко применимым префактором из соотношения M(R)?RD.