РАЗМЕРНОСТЬ ПОДОБИЯ
Оказывается, мы легко можем получить искомое более глубокое обоснование, рассмотрев случай самоподобных фигур и понятие размерности подобия. Мы часто слышим о том, что математики используют размерность подобия для приблизительного определения хаусдорфовой размерности, причем в большинстве случаев, рассматриваемых в этом эссе, такая приблизительная оценка оказывается верной. В применении к этим случаям мы вполне можем считать фрактальную размерность синонимом размерности подобия. < Аналогичным образом мы используем термин «топологическая размерность» как синоним обычной, «интуитивной», размерности. ?
В качестве своего рода стимулирующего вступления давайте рассмотрим стандартные самоподобные формы: отрезки прямой, прямоугольники на плоскости и т. д. (см. рис. 73). Евклидова размерность прямой равна 1, следовательно, при любом целочисленном «основании» b отрезок 0?x<X может быть «покрыт» по всей «длине» (каждая точка при этом покрывается один и только один раз) некоторым количеством «частей», равным N=b. Эти «части» представляют собой отрезки (k?1)X/b?x<kX/b, где k изменяется от 1 до b. Каждая часть может быть получена из целого с помощью преобразования подобия с коэффициентом r(N)=1/b=1/N.
Евклидова размерность плоскости равна 2. Отсюда аналогичным образом следует, что при любом значении b «целое», состоящее из прямоугольника с длинами сторон 0?x<Xи0?y<Y, может быть без остатка «разбито» на N=b2 частей. Части эти представляют собой прямоугольники, определяемые системой уравнений
Где k и h изменяются от 1 до b. И здесь каждая часть может быть получена из целого с помощью преобразования подобия с коэффициентом r(N)=1/b=1/N1/2.
В случае прямоугольного параллелепипеда аналогичное рассуждение приводит нас к коэффициенту r(N)=1/N1/3.
Не возникает никаких сложностей и с определением пространств, евклидова размерность E которых больше 3. (Здесь и далее мы будем обозначать евклидову — или декартову — размерность буквой E.) Для всех D-мерных параллелепипедов (D<E) соблюдается равенство
r(N)=1/N1/D.
Таким образом,
NrD=1.
Эквивалентные альтернативные выражения имеют следующий вид:
lnr(N)=ln(1/N1/D)=?(lnN)/D,
D=?lnN/lnr(N)=lnN/ln(1/r)=.
Перейдем теперь к нестандартным фигурам. Для того, чтобы показатель самоподобия имел формальный смысл, необходимо лишь, чтобы рассматриваемая фигура была самоподобной, т. е. чтобы ее можно было разбить на N частей, каждая из которых может быть получена из целой фигуры с помощью преобразования подобия с коэффициентом r (в сочетании со смещением или преобразованием симметрии). Полученная таким образом величина D всегда удовлетворяет равенству
0?D?E.
В случае троичной кривой Коха N=4, а r=1/3, отсюда D=ln4/ln3, что полностью совпадает с хаусдорфовой размерностью.