БРОУНОВСКИЕ ФРАКТАЛЫ: ФУНКЦИЯ И СЛЕД

We use cookies. Read the Privacy and Cookie Policy

К сожалению, термин «броуновское движение» неоднозначен. Во-первых, этим термином можно обозначить график выражения B(t) как функции от t. Если B(t) - ордината точки на плоскости, то график представляет собой плоскую кривую, подобным изображенным на рис. 338. Если B(t) - это точка в E - пространстве, то график представляет собой кривую (1+E) - пространстве (к E координатам точки B добавляется временн?я координата). Однако во многих случаях нас интересует всего лишь кривая в E - пространстве, которую броуновское движение оставляет за собой в виде следа. Когда след изгибается через равные промежутки времени, функция и след легко выводятся друг из друга. Однако в случае непрерывного броуновского движения эти два аспекта вовсе не эквивалентны, и обозначение их одним термином вносит путаницу.

Когда неоднозначность начинает угрожать ясности моих рассуждений, я разделяю термины и говорю либо о броуновской функции, либо о броуновском следе. Мы уже сталкивались с такой неоднозначностью при рассмотрении кривых Коха, однако здесь она более очевидна благодаря термину «движение».

Кроме того, переменная в броуновских функциях, рассматриваемых в главах 28 – 30, многомерна. Например, в одной из моделей земного рельефа в главе 28 предполагается, что высота точки поверхности является броуновской функцией от ее широты и долготы. Таким образом, часто возникает потребность в уточнении терминологии. При необходимости мы различаем броуновские функции и следы из прямой в прямую, из прямой в пространство, из пространства в прямую, из прямой в E - пространство и т.д.

Броуновские «поля». «Случайное поле» есть в действительности не рандомизированное (алгебраическое) поле, а всего лишь модный синоним (см., например, [13]) для термина «случайная ф1 нескольких переменных». Синоним этот ничем не оправдан, и его следует как можно скорее изъять из обихода, пока он не успел укорениться. Возник он, судя по всему, вследствие некомпетентного перевода с русского, как и термин «автомодельный» (его распространение я, к счастью, успел вовремя пресечь), появившийся в результате бездумного перевода русского термина «самоподобный».