ЗАПОЛНЕНИЕ БРОНХАМИ ТРЕХМЕРНОГО ПРОСТРАНСТВА

We use cookies. Read the Privacy and Cookie Policy

Я предлагаю в качестве альтернативы совершенно отличные от предыдущих фрактальные соображения для объяснения ?=3; они основаны на не зависящих от нашей воли геометрических ограничениях на процесс внутриутробного роста легких и на их окончательную форму. Очевидное преимущество такого подхода состоит в том, что он не требует введения в генетический код коэффициента ветвления 21/?~21/3 (на чем, по всей видимости, настаивает подход Мюррея).

Мы будем опираться на тот фундаментальный факт, что внутриутробный рост легкого начинается с почки, из которой вырастает трубка, на которой, в свою очередь, образуются две новые почки, каждая из которых ведет себя вышеописанным образом. Помимо всего прочего, такой рост самоподобен (а ствол легкого образует остаток!). Для того чтобы объяснить самоподобную структуру легкого, нет никакой необходимости доказывать, что она лучше всех остальных, нужно лишь показать, что она проще: представьте, насколько короче становится программа, управляющая ростом чего бы то ни было, если каждый последующий этап повторяет предыдущий в уменьшенном масштабе, или даже в том же масштабе, но после того, как результат предыдущего этапа дорастет до определенного размера. Если ситуация именно такова, то результат роста полностью определяется отношением поперечника ветвей к их длине и диаметрическим показателем. Кроме того, необходимо еще правило, указывающее, когда следует остановить рост.

Далее, в зависимости от значения ? (величину отношения поперечника ветвей к их длине будем полагать постоянной), процесс роста, регулируемый вышеописанными правилами, приводит к одному из следующих трех результатов: а) после некоторого конечного числа этапов ветви заполняют весь доступный для роста объем; б) ветвям удается заполнить только некоторую часть доступного пространства; в) доступное для роста пространство в точности соответствует необходимому для данного процесса. Когда мы хотим получить в пределе заполняющую пространство структуру, нет необходимости встраивать в программу роста какие-либо подробные инструкции, поскольку конкуренция за свободное пространство почти не оставляет места для неопределенности. Двумерная реализация такого процесса представлена на рис. 236 и 237 , где мы можем видеть, что по мере уменьшения отношения поперечника ветвей к их длине до нуля, коэффициент ветвления заполняющей плоскость кривой стремится к 21/2, что дает ?=E=2. Аналогичным образом коэффициент ветвления заполняющей пространство кривой, соответствующий бесконечно тонким ветвям, равен 21/3, что дает ?=E=3.

Так как показатель ?=3 соответствует предельному случаю бесконечно тонких трубок, его нельзя реализовать в действительности. А жаль, потому что «кора» дерева, построенного из бесконечно тонких разветвлений, продолжающихся до нуля, совершенно заполняет пространство. Этому последнему свойству мы могли бы дать телеологическую интерпретацию ничуть не хуже интерпретации Мюррея: такая структура наилучшим образом отвечает целям химического обмена между воздухом и кровью, поскольку предоставляет для этого обмена наибольшую поверхность.

Однако реальные бронхи не являются бесконечно тонкими, поэтому мы, в лучшем случае, можем рассчитывать лишь на значение показателей D и ?, чуть меньшее 3, что вполне согласуется с опытными данными. Это значение подразумевает одинаковую степень несовершенства во всех точках ветвления – однако такой результат может быть получен и как побочное следствие самоподобия с остатком и не нуждается в особом рассмотрении.

Размерность. Ветви нашего дерева образуют стандартное множество: его размерность и в топологическом, и во фрактальном смысле равна E. Если оболочка каждой ветви является гладкой, то размерность всей оболочки равна показателю ?.