ПОЛЬ ЛЕВИ (1886 – 1971)

We use cookies. Read the Privacy and Cookie Policy

Поль Леви – человек, который не признавал учеников, но которого я, тем не менее, считаю лучшим из моих учителей – преуспел в достижении тех целей, которые Башелье лишь видел издали. Леви удалось еще при жизни снискать себе славу самого, пожалуй, выдающегося специалиста по теории вероятности и даже занять (в возрасте почти восьмидесяти лет) то место в Парижской Академии наук, которое прежде занимал Пуанкаре, а после него Адамар (см. «Кто есть кто в мировой науке», с. 1035).

И все же на протяжении почти всей сознательной жизни Поля Леви доступ в «организованную» науку был для него закрыт. Его неоднократные попытки получения университетской должности оканчивались неудачей, и даже предложения о проведении публичных лекций администрация университета принимала очень неохотно, опасаясь, что они могут, так или иначе нарушить учебный план.

О своей жизни, мыслях и суждениях Леви подробно рассказывает в [311] – эту книгу стоит прочесть хотя бы потому, что ее автор не делает ни одной попытки, даже неосознанной, казаться лучше или хуже, чем он есть на самом деле. Конец лучше не читать вовсе, однако отдельные абзацы просто великолепны. В частности, очень проникновенно описывает Леви свой страх оказаться «лишь пережитком прошлого века» и ощущение того, что он – математик, «не похожий на других». Надо сказать, что ощущение его непохожести возникало не у него одного. Я помню, как Джон фон Нейман говорил в 1954 г.: «Мне думается, я понимаю, как работают все остальные математики, но Леви – это словно пришелец с другой планеты. Создается впечатление, что у него есть какие-то свои, особенные методы докапываться до истины, от которых мне, если честно, становится не по себе».

Неудачи Леви в академической карьере, в конечном счете, пошли науке только на пользу. Кроме ежегодного курса лекций по математическому анализу, который он читал в Политехнической школе, и некоторых других обязательств, ничто не отвлекало его от исследований. Работая в одиночку, Леви превратил теорию вероятности из скудного набора разрозненных фактов в научную дисциплину, позволяющую получать самые разнообразные результаты с помощью классических в своей прямоте методов. Интерес к этой теме возник у него во время подготовки заказанной ему лекции об осечках при стрельбе из ружей. Когда «Исчисление вероятностей» (см. [302]) наконец увидело свет, Леви было уже почти сорок лет – выдающийся ученый на грани совершения своего великого открытия и преподаватель в Политехнической школе в те периоды, когда школьная комиссия по распределению решила проявить любезность к бывшему выпускнику. Свои главные книги Леви написал между пятьюдесятью и шестьюдесятью годами, а б?льшая часть работы по броуновским функциям из гильбертова пространства в прямую была сделана еще позднее.

В одной из бесчисленных занимательных историй, собранных Леви в своей автобиографии, повествуется о короткой статье, посвященной парадоксу Бентли в отношении ньютоновского гравитационного потенциала (см. главу 9). В 1904 г. восемнадцатилетний студент Поль Леви совершенно самостоятельно построил модель вселенной Фурнье. Однако предоставим слово ему самому: «… построение было настолько простым, что мысль о публикации даже не приходила мне в голову до тех пор, пока двадцать пять лет спустя, я случайно не подслушал разговор между Жаном Перреном и Полем Ланжевеном. Два прославленных физика согласились на том, что парадокса можно избежать, лишь допустив, что Вселенная конечна. Я выступил вперед и указал им на ошибочность их рассуждений. Они, похоже, не совсем поняли, о чем я говорю, однако Перрен, потрясенный моей самоуверенностью, попросил меня записать мои соображения, что я и сделал».

Кстати о результатах, «слишком простых для публикации» - эта фраза встречается в воспоминаниях Леви довольно часто. Вообще многим творчески мыслящим людям свойственно переоценивать значимость самых сложных и причудливых из своих работ, недооценивая при этом работы простые и, казалось бы, ничем не примечательные. Когда впоследствии история расставляет все по местам, оказывается, что мы помним того или иного плодотворного мыслителя исключительно как автора какой-либо «леммы» или предположения, «слишком простых», на его взгляд, и опубликованных только лишь в качестве предварительных замечаний к некой забытой гениальной теореме.

Приведенная ниже цитата представляет собой приблизительный пересказ части моего выступления на церемонии, посвященной памяти Леви: «Я очень смутно помню лекции, которые он читал в Политехнической школе, так как мне досталось место в самом заднем ряду большой аудитории, а говорил Леви довольно тихо. Отчетливее всего мне запомнилась одна деталь – сходство высокой, худощавой и подтянутой фигуры Леви со знаком интеграла, который он рисовал на доске.

Иное дело – написанные им для этих лекций конспекты. Они ничем не напоминали традиционные конспекты, в которых стройными рядами следуют друг за другом определения, леммы и теоремы, а каждое допущение сформулировано предельно четко; величественное это шествие может лишь изредка прерваться тем или иным недосказанным выводом, который тут же недвусмысленно клеймится как таковой. Конспекты же Леви я бы сравнил, скорее, с бурным, неуправляемым потоком замечаний и наблюдений.

В своей автобиографии Леви пишет, что для того, чтобы пробудить у детей интерес к геометрии, учителю следует по возможности быстрее переходить к теоремам, которые они никак не смогут счесть очевидными. Похожий метод он применял и при чтении лекций в Политехнической школе. Эффективность его, возможно, объясняется тем, что для человека неотразимо привлекательны образы, связанные с земным рельефом вообще, и с горными восхождениями, в частности. На память приходит старый обзор, посвященный другому великому Cours d'Analyse de l'Ecole Polytechnique. Тот курс читал Камиль Жордан, а автором обзора был Анри Лебег. Лебег никогда не скрывал своего крайне пренебрежительного отношения к работе Леви, поэтому весьма забавно видеть, что все его восхваления Жордану с тем же успехом можно применить и к Леви. Он был не из тех, кто «пытается достичь вершины, на которую не ступала нога человека, не позволяя себе при этом оглядеться по сторонам. Если бы на эту вершину его вел кто-то другой, наш альпинист, возможно, оказался бы способен отвести взор от вершины и посмотреть на расстилающиеся вокруг красоты, но ему неоткуда было бы узнать, что именно они собой представляют. Вообще говоря, с очень высокой вершины ничего увидеть нельзя; альпинисты взбираются на горы исключительно ради самого процесса».

Нет нужды говорить о том, что конспекты лекций Леви не пользовались популярностью. Многие отличники Политехнической школы воспринимали их не иначе как лишнюю головную боль при подготовке к экзаменам. В окончательном варианте, который мне довелось изучать в качестве Maitre de Conferences профессора Леви, все характерные особенности его конспектов проявились еще отчетливее. Теория интегрирования, например, трактуется здесь лишь как приближение. Леви однажды писал, что, принуждая свой талант, хорошо работу не выполнить. Создается ощущение, что при написании последнего конспекта талант Леви испытывал серьезное принуждение.

И все же о курсе, который он читал студентам, поступившим в Школу в 1944 г., я храню исключительно положительные воспоминания. Интуиции нельзя научить, но ее очень легко подавить. Я думаю, что именно такого исхода Леви стремился избежать прежде всего, и мне кажется, что в большинстве случаев это ему удавалось.

За время пребывания в Политехнической школе я слышал много различных мнений о творческой работе Леви. Чаще всего, однако, мнение сводилось к следующему рассуждению: сначала превозносилась важность и значимость деятельности Леви, сразу же за похвалой следовало замечание о том, что в его трудах нет ни единого безупречного в математическом смысле доказательства, зато до неприличия много рассуждений сомнительной обоснованности. В заключение провозглашалась настоятельнейшая необходимость привести все в математически строгий вид. К настоящему моменту эта задача уже решена, и сегодня интеллектуальные потомки Леви наслаждаются всеобщим признанием за ними звания полноправных математиков. Как только что заметил один из них, они превратились в «обуржуазившихся пробабилистов».

Боюсь, что за это признание было заплачено слишком много. Мне кажется, в любой области знания существует множество последовательных уровней точности и обобщения. Находясь на «нижних» уровнях, мы оказываемся в состоянии справиться лишь с самыми тривиальными задачами. Можно, однако, двинуться дальше и (это справедливо почти для всех областей) довести точность и обобщение до крайности. Например, мы можем извести сотню страниц на предварительные замечания и допущения только для того, чтобы доказать одну – единственную теорему, причем в виде, немногим более общим, чем было до нас, и не открыть при этом никаких новых горизонтов. И лишь в немногих благословенных областях знания допускается существование некоторого промежуточного уровня точности и обобщения, который можно назвать классическим. Почти уникальное величие Поля Леви заключается в том, что он был для своей области одновременно и предтечей, и единственным классиком.

Мысли Леви редко занимало что-либо, не имеющее отношения к чистой математике. При этом тем, кто желает найти решение какой-либо предварительно и конкретно поставленной задачи, редко удается обнаружить в его трудах готовую формулу, не требующую никакой дополнительной доработки. С другой стороны, насколько я могу доверять своему личному опыту, именно благодаря особому подходу к фундаментальным вопросам формулировки случайности, Леви стал тем, кем он стал – титаном среди математиков».

При исследовании различных феноменов – тех, что составляют предмет настоящего эссе, и тех, что я рассматривал в других своих работах – очень часто возникают ситуации, когда для должной математической формализации того или иного явления оказывается необходим либо один из концептуальных инструментов, предоставленных нам Полем Леви, либо иной инструмент, но созданный по тому же образу и подобию и обладающий той же степенью обобщения. Чем глубже погружаешься в удивительный и таинственный мир, исследованию которого Леви посвятил всего себя, тем яснее осознаешь царящую в нем гармонию – я усматриваю в этом несомненное свидетельство гениальности Леви, поскольку совершенно та же гармония присуща и другому миру, тому, в котором живем мы.