ТЕМПЕРАТУРА ПОВЕСТВОВАНИЯ
Вышеописанные отклонения допускают на мгновение совершенно иную интерпретацию, идею которой мы позаимствовали в статистической термодинамике. Аналогами физической энергии и физической энтропии послужат стоимость кодирования и информация Шеннона. А показатель D выступит в роли «температуры повествования». Чем «горячее» речь, тем больше вероятность употребления редких слов.
Случай D<1 соответствует стандартному случаю, в котором формальный эквивалент энергии не ограничен сверху.
С другой стороны, случай, в котором слова настолько «горячи», что это приводит в результате к D>1, предполагает в высшей степени необычное наличие у энергии конечной верхней границы.
Вскоре после того, как я описал эту резкую дихотомию в терминах лингвистической статистики, независимо от меня был найден ее физический аналог. Обратная физическая температура 1/? имеет наименьшее значение – и даже обращается в нуль, - когда тело нагрето до наивысшей температуры. Норманн Рэмзи предположил, что если тело подвергать дальнейшему нагреву, величина 1/? должна стать отрицательной. Обсуждению этого параллелизма посвящена моя статья [360].
В термодинамике объемные свойства объектов выводятся на основании микроканонической равно вероятности. Поскольку молекулы мы в лицо не различаем, допущения касательно их возможных состояний не вызывают у нас сильных эмоций, однако слова обладают ярко выраженной индивидуальностью, поэтому при изучении языка допущение о равновероятности вряд ли будет имеет успех.
Предыдущая аналогия становится особенно уместной в рамках определенных обобщенных подходов к термодинамике. Рискуя заслужить обвинение в чрезмерном цитировании работ, имеющих лишь косвенное отношение к настоящему эссе, все же скажу: один из таких формализмов я рассматривал в статьях [339, 344].